エンタープライズ エージェント システムの構築: コア コンポーネントの設計と最適化
導入
エンタープライズ グレードの AI エージェントを構築するには、コンポーネントの設計、システム アーキテクチャ、エンジニアリングの実践について慎重に検討する必要があります。この記事では、堅牢でスケーラブルなエージェント システムを構築するための主要なコンポーネントとベスト プラクティスについて説明します。
1. 迅速なテンプレートエンジニアリング
1.1 テンプレートのデザインパターン
from typing import Protocol, Dict from jinja2 import Template class PromptTemplate(Protocol): def render(self, **kwargs) -> str: pass class JinjaPromptTemplate: def __init__(self, template_string: str): self.template = Template(template_string) def render(self, **kwargs) -> str: return self.template.render(**kwargs) class PromptLibrary: def __init__(self): self.templates: Dict[str, PromptTemplate] = {} def register_template(self, name: str, template: PromptTemplate): self.templates[name] = template def get_template(self, name: str) -> PromptTemplate: return self.templates[name]
1.2 バージョン管理とテスト
class PromptVersion: def __init__(self, version: str, template: str, metadata: dict): self.version = version self.template = template self.metadata = metadata self.test_cases = [] def add_test_case(self, inputs: dict, expected_output: str): self.test_cases.append((inputs, expected_output)) def validate(self) -> bool: template = JinjaPromptTemplate(self.template) for inputs, expected in self.test_cases: result = template.render(**inputs) if not self._validate_output(result, expected): return False return True
2. 階層型記憶システム
2.1 メモリアーキテクチャ
from typing import Any, List from datetime import datetime class MemoryEntry: def __init__(self, content: Any, importance: float): self.content = content self.importance = importance self.timestamp = datetime.now() self.access_count = 0 class MemoryLayer: def __init__(self, capacity: int): self.capacity = capacity self.memories: List[MemoryEntry] = [] def add(self, entry: MemoryEntry): if len(self.memories) >= self.capacity: self._evict() self.memories.append(entry) def _evict(self): # Implement memory eviction strategy self.memories.sort(key=lambda x: x.importance * x.access_count) self.memories.pop(0) class HierarchicalMemory: def __init__(self): self.working_memory = MemoryLayer(capacity=5) self.short_term = MemoryLayer(capacity=50) self.long_term = MemoryLayer(capacity=1000) def store(self, content: Any, importance: float): entry = MemoryEntry(content, importance) if importance > 0.8: self.working_memory.add(entry) elif importance > 0.5: self.short_term.add(entry) else: self.long_term.add(entry)
2.2 メモリの取得とインデックス作成
from typing import List, Tuple import numpy as np from sklearn.metrics.pairwise import cosine_similarity class MemoryIndex: def __init__(self, embedding_model): self.embedding_model = embedding_model self.embeddings = [] self.memories = [] def add(self, memory: MemoryEntry): embedding = self.embedding_model.embed(memory.content) self.embeddings.append(embedding) self.memories.append(memory) def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]: query_embedding = self.embedding_model.embed(query) similarities = cosine_similarity( [query_embedding], self.embeddings )[0] top_k_indices = np.argsort(similarities)[-k:] return [ (self.memories[i], similarities[i]) for i in top_k_indices ]
3. 観察可能な推論チェーン
3.1 チェーン構造
from typing import List, Optional from dataclasses import dataclass import uuid @dataclass class ThoughtNode: content: str confidence: float supporting_evidence: List[str] class ReasoningChain: def __init__(self): self.chain_id = str(uuid.uuid4()) self.nodes: List[ThoughtNode] = [] self.metadata = {} def add_thought(self, thought: ThoughtNode): self.nodes.append(thought) def get_path(self) -> List[str]: return [node.content for node in self.nodes] def get_confidence(self) -> float: if not self.nodes: return 0.0 return sum(n.confidence for n in self.nodes) / len(self.nodes)
3.2 チェーンの監視と分析
import logging from opentelemetry import trace from prometheus_client import Histogram reasoning_time = Histogram( 'reasoning_chain_duration_seconds', 'Time spent in reasoning chain' ) class ChainMonitor: def __init__(self): self.tracer = trace.get_tracer(__name__) def monitor_chain(self, chain: ReasoningChain): with self.tracer.start_as_current_span("reasoning_chain") as span: span.set_attribute("chain_id", chain.chain_id) with reasoning_time.time(): for node in chain.nodes: with self.tracer.start_span("thought") as thought_span: thought_span.set_attribute( "confidence", node.confidence ) logging.info( f"Thought: {node.content} " f"(confidence: {node.confidence})" )
4. コンポーネントの分離と再利用
4.1 インターフェース設計
from abc import ABC, abstractmethod from typing import Generic, TypeVar T = TypeVar('T') class Component(ABC, Generic[T]): @abstractmethod def process(self, input_data: T) -> T: pass class Pipeline: def __init__(self): self.components: List[Component] = [] def add_component(self, component: Component): self.components.append(component) def process(self, input_data: Any) -> Any: result = input_data for component in self.components: result = component.process(result) return result
4.2 コンポーネントレジストリ
class ComponentRegistry: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance.components = {} return cls._instance def register(self, name: str, component: Component): self.components[name] = component def get(self, name: str) -> Optional[Component]: return self.components.get(name) def create_pipeline(self, component_names: List[str]) -> Pipeline: pipeline = Pipeline() for name in component_names: component = self.get(name) if component: pipeline.add_component(component) return pipeline
5. パフォーマンスの監視と最適化
5.1 パフォーマンス指標
from dataclasses import dataclass from typing import Dict import time @dataclass class PerformanceMetrics: latency: float memory_usage: float token_count: int success_rate: float class PerformanceMonitor: def __init__(self): self.metrics: Dict[str, List[PerformanceMetrics]] = {} def record_operation( self, operation_name: str, metrics: PerformanceMetrics ): if operation_name not in self.metrics: self.metrics[operation_name] = [] self.metrics[operation_name].append(metrics) def get_average_metrics( self, operation_name: str ) -> Optional[PerformanceMetrics]: if operation_name not in self.metrics: return None metrics_list = self.metrics[operation_name] return PerformanceMetrics( latency=sum(m.latency for m in metrics_list) / len(metrics_list), memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list), token_count=sum(m.token_count for m in metrics_list) / len(metrics_list), success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list) )
5.2 最適化戦略
class PerformanceOptimizer: def __init__(self, monitor: PerformanceMonitor): self.monitor = monitor self.thresholds = { 'latency': 1.0, # seconds 'memory_usage': 512, # MB 'token_count': 1000, 'success_rate': 0.95 } def analyze_performance(self, operation_name: str) -> List[str]: metrics = self.monitor.get_average_metrics(operation_name) if not metrics: return [] recommendations = [] if metrics.latency > self.thresholds['latency']: recommendations.append( "Consider implementing caching or parallel processing" ) if metrics.memory_usage > self.thresholds['memory_usage']: recommendations.append( "Optimize memory usage through batch processing" ) if metrics.token_count > self.thresholds['token_count']: recommendations.append( "Implement prompt optimization to reduce token usage" ) if metrics.success_rate < self.thresholds['success_rate']: recommendations.append( "Review error handling and implement retry mechanisms" ) return recommendations
結論
エンタープライズ グレードのエージェント システムを構築するには、次の点に細心の注意を払う必要があります。
- 構造化されたプロンプト管理とバージョン管理
- 効率的でスケーラブルなメモリ システム
- 観察可能で追跡可能な推論プロセス
- モジュール式で再利用可能なコンポーネント設計
- 包括的なパフォーマンスの監視と最適化
以上がエンタープライズ エージェント システムの構築: コア コンポーネントの設計と最適化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。
