ホームページ バックエンド開発 Python チュートリアル NumPyを使用してPythonで移動平均(移動平均)を計算する方法?

NumPyを使用してPythonで移動平均(移動平均)を計算する方法?

Nov 27, 2024 pm 07:16 PM

How to Calculate a Running Mean (Moving Average) in Python Using NumPy?

NumPy を使用した Python での移動平均

1D 配列の移動平均とも呼ばれる移動平均の計算は一般的なタスクですデータ分析において。 NumPy は、移動平均を含む畳み込み演算を実行するための np.convolve という強力なツールを提供します。

定義と実装:

移動平均には、ウィンドウを入力配列を使用し、各ステップでウィンドウ内の値の平均を計算します。 NumPy では、これは次のように実現されます:

import numpy as np

array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
window_size = 3

result = np.convolve(array, np.ones(window_size) / window_size, mode='valid')
ログイン後にコピー

説明:

  • np.ones(window_size) は、次のサイズに等しい 1 の配列を作成します。ウィンドウ サイズ。
  • np.ones(window_size) / window_size は、各要素をウィンドウ サイズで除算して配列を作成し、算術平均を計算するためのカーネルを生成します。
  • np.convolve はカーネルを取得し、入力配列と畳み込み、スライド平均計算を実行します。
  • mode='valid' は、ウィンドウで完全にカバーできる配列の部分のみを返すことを指定し、結果のサイズは len(array) - になります。 window_size 1.

エッジ処理:

np.convolve の mode 引数は、畳み込み中に配列のエッジがどのように処理されるかを制御します。使用可能なモードは、「full」、「same」、「valid」です。

  • 「full」には、元の長さと追加されたゼロの両方が含まれます。
  • 「same」は、次の値までゼロを追加します。出力形状は入力形状と同じです。
  • 'valid' には、完全にカバーできる配列の部分のみが含まれます。ウィンドウ。

「有効」モードは、配列の先頭と末尾のウィンドウ化されたセクションを含まない結果が得られるため、通常、移動平均に使用されます。

例:

上記の例では、結果は次のようになります。 be:

[4.  5.  6.  7.  8.  9.]
ログイン後にコピー

これは、ウィンドウ サイズ 3 の入力配列の移動平均を表します。

以上がNumPyを使用してPythonで移動平均(移動平均)を計算する方法?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングのためのPython:詳細な外観 科学コンピューティングのためのPython:詳細な外観 Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles