Python で効率的に素数を生成するためにエラトステネスのふるいを最適化するにはどうすればよいでしょうか?
エラトステネスのふるい: Python での素数生成の最適化
エラトステネスのふるいは、素数を見つけるための古典的なアルゴリズムです。ただし、パフォーマンスのボトルネックを回避するには、正しく実装することが重要です。
元の実装
提供された primes_sieve 関数は、候補素数のリストを維持し、非素数を繰り返し削除します。リストを調べて因数を削除することで素数を決定します。このアプローチは、リスト操作のコストが高いため、本質的に非効率です。
辞書ベースの最適化
改良された primes_sieve1 関数は、辞書を使用して素数フラグを格納します。リストベースのアプローチよりも高速ではありますが、依然として課題に直面しています。未定義の順序で辞書を反復処理するため、非素因数の冗長なマーク付けが発生します。さらに、最終的な辞書をリストに変換するため、不要なオーバーヘッドが発生します。
正しく効率的な実装
正しいエラトステネスのふるいアルゴリズムは、ブール フラグのリストを利用して、素数性を示します。 primes_sieve2 関数は、すべての数値のフラグを True に初期化し、0 と 1 のフラグを False に設定します。リストを反復処理し、フラグを False に設定して素数以外をマークします。
このアプローチは次の理由から効率的です。
- 辞書の代わりにリストを使用し、オーバーヘッドを回避します。
- 素因数のみを非素数としてマークし、冗長性を削減します。
- 各素数の 2 倍ではなく 2 乗から開始することで、マーキング プロセスを最適化します。
エラトステネスのふるいを正しく実装することで、パフォーマンスを大幅に向上させることができます。素数の生成により、200 万未満の素数を見つけるなどの大きな入力制限にも適しています。
以上がPython で効率的に素数を生成するためにエラトステネスのふるいを最適化するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
