「functools.wraps」は Python デコレータで関数のメタデータをどのように保持しますか?
functools.wraps の謎を明らかにする: 関数メタデータの維持
デコレーターは、Python 関数の機能を拡張する上で重要な役割を果たします。ただし、多くの場合、名前、docstring、引数リストなどの重要な関数メタデータが失われるという代償を伴います。幸いなことに、functools.wraps が救世主として登場し、この貴重な情報を保存します。
デコレータを適用すると、元の関数がラッパー関数に置き換えられ、特定の重要な詳細が見えにくくなります。たとえば、次の例を考えてみましょう。
def logged(func): def with_logging(*args, **kwargs): print(func.__name__ + " was called") return func(*args, **kwargs) return with_logging @logged def f(x): """does some math""" return x + x * x
print(f.__name__) を実行すると、「with_logging」が生成され、f.__doc__ は空の文字列を返します。この結果は、ラッパー関数 with_logging が f.
functools.wraps の代わりに使用されているために発生します。デコレータ関数をラップし、デコレータ関数のメタデータがそのまま残るようにすることで、この問題に対処します。以下に示すように、 @wraps(func) を内部関数に適用することで、目的の動作を復元します。
from functools import wraps def logged(func): @wraps(func) def with_logging(*args, **kwargs): print(func.__name__ + " was called") return func(*args, **kwargs) return with_logging @logged def f(x): """does some math""" return x + x * x print(f.__name__) # prints 'f' print(f.__doc__) # prints 'does some math'
この改訂された例では、 f.__name__ は "f" を表示し、 f.__doc__ は正しく反映します。元の関数の docstring。メタデータの保存は、関数の ID、ドキュメント化、およびイントロスペクション機能を維持するために重要です。
したがって、functools.wraps はデコレータ ツールキットの重要なツールであり、情報の損失を防ぎ、デコレートされた関数の保持を保証することを覚えておいてください。意図した属性。
以上が「functools.wraps」は Python デコレータで関数のメタデータをどのように保持しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
