NumPy 配列内の要素を効率的に位置揃えするにはどうすればよいですか?
NumPy 配列の正当化
はじめに
Python では、NumPy は数値計算のための効率的なツールを提供します。よくある課題の 1 つは、NumPy 配列内の要素を左右上下に揃えて配置することです。この記事では、ベクトル化されたアプローチを使用した改善されたソリューションを紹介します。
ベクトル化されたソリューション
関数 justify は、2D 配列内の要素を整列させ、指定された位置に要素をプッシュします。 Side.
def justify(a, invalid_val=0, axis=1, side='left'): justified_mask = np.sort(a!=invalid_val, axis=axis) if (side=='up') or (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[a!=invalid_val] else: out.T[justified_mask.T] = a.T[a.T!=invalid_val] return out
使用法
a = np.array([[1, 0, 2, 0], [3, 0, 4, 0], [5, 0, 6, 0], [0, 7, 0, 8]]) print(justify(a, axis=0, side='up')) # Justify values vertically "up" print(justify(a, axis=0, side='down')) # Justify values vertically "down" print(justify(a, axis=1, side='left')) # Justify values horizontally "left" print(justify(a, axis=1, side='right')) # Justify values horizontally "right"
出力
[[1, 7, 2, 8] [3, 0, 4, 0] [5, 0, 6, 0] [0, 0, 0, 0]] [[0, 0, 0, 0] [1, 0, 2, 0] [3, 0, 4, 0] [5, 7, 6, 8]] [[1, 2, 0, 0] [3, 4, 0, 0] [5, 6, 0, 0] [0, 7, 0, 8]] [[0, 0, 1, 2] [0, 0, 3, 4] [0, 0, 5, 6] [0, 0, 7, 8]]
一般的なケースへの拡張
justify_nd 関数は、このアプローチを拡張して、任意の次元の ndarray 内の要素を位置合わせします。
def justify_nd(a, invalid_val, axis, side): justified_mask = np.sort(a!=invalid_val, axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) pushax = lambda a: np.moveaxis(a, axis, -1) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[a!=invalid_val] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(a!=invalid_val)] return out
使用法 (一般的な場合)
a = np.array([[[54, 57, 0, 77], [77, 0, 0, 31], [46, 0, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [ 0, 47, 0, 87], [82, 19, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 0], [29, 0, 0, 49], [42, 75, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 38], [44, 10, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]]) print(justify_nd(a, invalid_val=0, axis=0, side='front')) # Justify first dimension "front" print(justify_nd(a, invalid_val=0, axis=1, side='front')) # Justify second dimension "front" print(justify_nd(a, invalid_val=0, axis=2, side='front')) # Justify third dimension "front" print(justify_nd(a, invalid_val=0, axis=2, side='end')) # Justify third dimension "end"
出力
[[[54, 57, 0, 77], [77, 47, 0, 31], [46, 19, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [29, 10, 0, 87], [82, 75, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 38], [44, 0, 0, 49], [42, 0, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 0], [ 0, 0, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]] [[[54, 57, 68, 77], [77, 22, 0, 31], [46, 0, 0, 98], [98, 0, 0, 75]], [[49, 47, 57, 98], [82, 19, 0, 87], [79, 89, 0, 90], [ 0, 0, 0, 74]], [[29, 75, 84, 49], [42, 41, 0, 67], [42, 0, 0, 33], [ 0, 0, 0, 0]], [[44, 10, 0, 38], [63, 14, 0, 0], [89, 0, 0, 0], [ 0, 0, 0, 0]]] [[[ 0, 54, 57, 77], [ 0, 0, 77, 31], [ 0, 0, 46, 98], [98, 22, 68, 75]], [[ 0, 0, 49, 98], [ 0, 0, 47, 87], [ 0, 82, 19, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 0], [ 0, 0, 29, 49], [ 0, 42, 75, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 38], [ 0, 0, 44, 10], [ 0, 0, 0, 63], [ 0, 0, 89, 14]]]
以上がNumPy 配列内の要素を効率的に位置揃えするにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。
