ホームページ バックエンド開発 Python チュートリアル Python キャッシュ: 効果的なキャッシュでコードを高速化する方法

Python キャッシュ: 効果的なキャッシュでコードを高速化する方法

Dec 16, 2024 am 02:32 AM

このブログは当初、Crawlbase Blog に投稿されました

ソフトウェア アプリケーションで優れたユーザー エクスペリエンスを作成するには、効率的で高速なコードが重要です。ユーザーは、Web ページの読み込み、機械学習モデルのトレーニング、スクリプトの実行など、遅い応答を待つことを好みません。コードを高速化する 1 つの方法はキャッシュです。

キャッシュの目的は、頻繁に使用されるデータを一時的にキャッシュして、何度も再計算したり取得したりすることなく、プログラムがより迅速にデータにアクセスできるようにすることです。キャッシュにより、応答時間が短縮され、負荷が軽減され、ユーザー エクスペリエンスが向上します。

このブログでは、キャッシュの原則、その役割、ユースケース、戦略、Python でのキャッシュの実例について説明します。始めましょう!

Python でのキャッシュの実装

Python では複数の方法でキャッシュを実行できます。 2 つの一般的な方法を見てみましょう。キャッシュ用の手動デコレータを使用する方法と、Python の組み込み functools.lru_cache.

を使用する方法です。

1. キャッシュ用の手動デコレーター

デコレーターは、別の関数をラップする関数です。関数呼び出しの結果をメモリに保存し、同じ入力が再度呼び出された場合にキャッシュされた結果を返すキャッシュ デコレータを作成できます。以下に例を示します:

import requests

# Manual caching decorator
def memoize(func):
    cache = {}
    def wrapper(*args):
        if args in cache:
            return cache[args]
        result = func(*args)
        cache[args] = result
        return result
    return wrapper

# Function to get data from a URL
@memoize
def get_html(url):
    response = requests.get(url)
    return response.text

# Example usage
print(get_html('https://crawlbase.com'))
ログイン後にコピー

この例では、初めて get_html が呼び出されたときに、URL からデータをフェッチし、キャッシュします。同じ URL を使用した後続の呼び出しでは、キャッシュされた結果が返されます。

  1. Python の functools.lru_cache の使用

Python は、functools モジュールから lru_cache と呼ばれる組み込みのキャッシュ メカニズムを提供します。このデコレーターは関数呼び出しをキャッシュし、キャッシュがいっぱいになると最も最近使用されていない項目を削除します。使用方法は次のとおりです:

from functools import lru_cache

@lru_cache(maxsize=128)
def expensive_computation(x, y):
    return x * y

# Example usage
print(expensive_computation(5, 6))
ログイン後にコピー

この例では、lru_cache はPrice_computation の結果をキャッシュします。同じ引数を使用して関数が再度呼び出された場合、再計算ではなくキャッシュされた結果が返されます。

キャッシュ戦略のパフォーマンスの比較

キャッシュ戦略を選択するときは、さまざまな条件下でキャッシュ戦略がどのように実行されるかを考慮する必要があります。キャッシュ戦略のパフォーマンスは、キャッシュ ヒット数 (キャッシュ内でデータが見つかった場合) とキャッシュのサイズによって異なります。

一般的なキャッシュ戦略の比較は次のとおりです:

Python Cache: How to Speed Up Your Code with Effective Caching

適切なキャッシュ戦略の選択は、アプリケーションのデータ アクセス パターンとパフォーマンスのニーズによって異なります。

最終的な考え

キャッシュはアプリにとって非常に役立ちます。データの取得時間とシステム負荷を軽減できます。 Web アプリや機械学習プロジェクトを構築している場合でも、システムを高速化したい場合でも、スマート キャッシュによりコードの実行を高速化できます。

FIFO、LRU、LFU などのキャッシュ方法にはさまざまな使用例があります。たとえば、LRU は頻繁にアクセスされるデータを保持する必要がある Web アプリに適しており、LFU は長期にわたってデータを保存する必要があるプログラムに適しています。

キャッシュを正しく実装すると、より高速で効率的なアプリを設計でき、パフォーマンスとユーザー エクスペリエンスが向上します。

以上がPython キャッシュ: 効果的なキャッシュでコードを高速化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングのためのPython:詳細な外観 科学コンピューティングのためのPython:詳細な外観 Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles