複数の Pandas DataFrame 列に関数を適用する方法
Pandas データフレームの複数の列に関数を適用する
Pandas データフレームの複数の列に関数を要素ごとに適用するのは一般的なタスクです。この例では、2 つの特定の列 'col_1' と 'col_2' に関数を適用して、新しい列 'col_3' を作成する方法を示します。
まず、適用する関数を定義します。この場合、2 つの引数 sta と end を取る get_sublist があります。この関数は、入力引数に基づいて事前定義されたリスト mylist のサブリストを返すように設計されています。
次に、操作する列を含む Pandas DataFrame (df) を作成します。列に関数に適したデータ型があることを確認してください。
関数を複数の列に適用するには、Pandas の apply 関数を使用します。この関数は関数を受け取り、それを DataFrame の各行に適用します。行全体に関数を適用するには、axis 引数を指定する必要があります。
ただし、apply 関数を位置引数とともに使用すると、エラーが発生する可能性があります。これを解決するには、適用する引数として匿名関数 (ラムダ関数とも呼ばれます) を使用します。ラムダ関数は、名前を使用して現在の行の列値にアクセスできます。
コードは次のとおりです。
df['col_3'] = df.apply(lambda x: get_sublist(x.col_1, x.col_2), axis=1)
このコードは、次の結果を含む新しい列 'col_3' を作成します。 get_sublist 関数を「col_1」と「col_2」の各行に適用します。ラムダ関数は、正しい引数が get_sublist 関数に渡されることを保証します。
その結果、目的の出力を持つ DataFrame が取得されます。ここで、'col_3' の各行には、対応する値に基づくサブリストが含まれます。 'col_1' と 'col_2' 内。
以上が複数の Pandas DataFrame 列に関数を適用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
