Python でネストされた辞書をフラット化するにはどうすればよいですか?
複雑さを解明する: ネストされた辞書の平坦化
迷宮のもつれた構造を反映した、ネストされたレベルを持つ複雑な辞書に遭遇したとします。この辞書をたどるには、巧妙なテクニックを使って辞書を平坦化し、複雑な層を解きほぐして単純化した形式にする必要があります。この簡略化された表現により、よりアクセスしやすく簡単な方法で基礎となるデータが明らかになります。
この簡略化の鍵は、ディクショナリのキーと値の両方を反復処理することにあります。このプロセスを通じて、親キーと現在のキーをカスタマイズ可能な区切り文字で区切って連結することによって、新しいキーが細心の注意を払って構築されます。
値自体が辞書である場合、平坦化プロセスが再帰的に適用され、シームレスに組み込まれます。その要素をフラットな構造に組み込みます。ただし、値が辞書でない場合は、フラット化された辞書に直接追加されます。
本質的に、ネストされた辞書の複雑な網の中に含まれる値は、細心の注意を払って抽出され、その値を反映して、新しく割り当てられたキーで装飾されます。上下関係。その結果、きちんと整理されたマップに似たフラット化された辞書が作成され、新しく割り当てられた一意のキーによって各値を簡単に見つけることができます。
このフラット化手法をさらに詳しく説明するために、次の例を考えてみましょう。
from collections.abc import MutableMapping def flatten(dictionary, parent_key='', separator='_'): items = [] for key, value in dictionary.items(): new_key = parent_key + separator + key if parent_key else key if isinstance(value, MutableMapping): items.extend(flatten(value, new_key, separator=separator).items()) else: items.append((new_key, value)) return dict(items)
次のように辞書に適用すると、
{'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
結果は平坦化されます。 Dictionary:
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
この平坦化手法を利用すると、ネストされた辞書の複雑さを効果的に解明し、内部の隠された構造を明らかにします。この合理化された表現により、開発者はよりアクセスしやすく管理しやすいデータ形式を利用できるようになり、データ分析、クエリ、データ操作などのタスクが容易になります。
以上がPython でネストされた辞書をフラット化するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
