どのような場合に Pandas の `apply()` 関数の使用を避けるべきでしょうか?
Pandas コードで apply() を使用しない場合
この包括的な分析では、Pandas コードで apply() 関数を使用することの長所と短所を調査します。 p>
apply() を理解するFunction
apply() は、DataFrame の各行または列にユーザー定義関数を適用できる便利な関数です。ただし、制限と潜在的なパフォーマンスの問題が伴います。
apply() を回避する理由
- パフォーマンスの問題: apply() はユーザー定義関数を反復的に適用するため、パフォーマンスが大幅に低下します。ボトルネック。通常、ベクトル化された代替またはリスト内包表記の方が高速です。
- 冗長な行または列の実行: 場合によっては、apply() はユーザー定義関数を 2 回実行します。副作用を確認し、関数を一度適用する
- 単純な操作の非効率: sum() や max() などの多くの組み込み Pandas 関数は、apply() よりもはるかに高速に操作を実行します。単純なタスクの場合。
時apply() の使用を検討する
一般的に apply() は避けるべきですが、許容可能なオプションとなる特定の状況もあります:
- データフレームではなくシリーズのベクトル化された関数: 関数がSeries についてはベクトル化されていますが DataFrame についてはベクトル化されていないため、apply() を使用して関数を複数の列に適用できます。
: 複数の変換を 1 つの変換に結合するにはGroupBy オペレーション、apply() は GroupBy で使用できます。 object. - Series から String への変換: 驚くべきことに、以下のデータ サイズの場合、Series 内の整数を文字列に変換する場合、apply() の方が astype() よりも高速になることがあります。 215.
コード リファクタリングのヒント
apply の使用を減らすには() コードのパフォーマンスを向上させるには、次の点を考慮してください。テクニック:
- ベクトル化操作: 可能な限り Pandas または numpy で利用可能なベクトル化関数を使用します。
- Pandas の組み込み関数を利用する: sum() や max() などの一般的な操作に最適化された Pandas 関数を活用します。
- カスタム ラムダを控えめに使用する: apply() でカスタム ラムダを使用する場合は、渡します。二重を避けるために、リスト内包表記またはベクトル化関数の引数としてそれらを使用します。
< ;li>リスト内包表記を利用する:スカラー操作の場合、リスト内包表記は apply() のより高速な代替手段を提供します。
これらの手法を適用すると、コードの実行が大幅に高速化され、全体的なパフォーマンスが向上します。
結論< ;/h2>
apply() は便利な関数ですが、そうすべきです。慎重に使用してください。 apply() の制限とパフォーマンスへの影響を理解することは、効率的でスケーラブルな Pandas コードを作成するために重要です。
以上がどのような場合に Pandas の `apply()` 関数の使用を避けるべきでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
