Bash コマンドがサーバー上の Python では失敗するのに、ローカルでは機能するのはなぜですか?
Python での Bash コマンドの実行
サーバー上の Python スクリプト内で Bash コマンドを実行すると、同じコードであってもエラーが発生する場合がありますローカルで動作します。この一般的な理由の 1 つは、オペレーティング システムによって Bash が呼び出されるさまざまな方法にあります。
Bash について
Python では、subprocess モジュールを使用して Bash コマンドを実行できます。ただし、デフォルトの動作では /bin/sh が使用されます。これは、Bash のすべての機能をサポートするわけではない最小限のシェルです。 Bash 固有の構文が必要な場合は、次のように Bash 実行可能ファイルを明示的に指定する必要があります。
subprocess.run(command, shell=True, executable='/bin/bash')
シェルとシェルなし
subprocess.run( を呼び出すことができます) )shell=True またはshell=False を指定します。 shell=True を指定すると、シェルが解析する単一の文字列コマンドを指定できます。 shell=False を使用すると、シェルを使用せずに文字列引数のリストを実行可能ファイルに渡します。
shell=False を使用すると、シェルの機能が回避されますが、コマンドを引数に正確に解析する必要があります。 shlex.split() 関数はこれを支援します。
subprocess.run(shlex.split(command)) # shell=False
テキスト デコード
デフォルトでは、サブプロセス出力はバイトとして提供されます。 Unicode 文字列にデコードするには、text=True を使用します。
subprocess.run(command, shell=True, text=True)
トラブルシューティング
それでもエラーが発生する場合は、以下を確認することが重要です。
- Bash コマンドが適切にフォーマットされ、サポートされていることを確認してください。
- Bash 実行可能ファイル (/bin/bash) がサーバー上に存在することを確認します。
- 出力が正しくデコードされていることを確認するには、text=True の使用を検討してください。
- 使用より詳細な出力 (例: subprocess.run(..., check=True, stderr=subprocess.PIPE))。エラー。
以上がBash コマンドがサーバー上の Python では失敗するのに、ローカルでは機能するのはなぜですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
