「新しい」オペレータはいつメモリをゼロに初期化しますか?
演算子の New とメモリの初期化
new 演算子は、初期化せずにメモリを割り当てることが一般的に知られています。ただし、最近のコード例では、new を使用した割り当て時にメモリがゼロに初期化されるように見えるシナリオが明らかになりました。これにより、オペレーターの実際の動作について疑問が生じます。
コード:
#include <iostream> int main() { unsigned int *wsk2 = new unsigned int(5); std::cout << "wsk2: " << wsk2 << " " << *wsk2 << std::endl; delete wsk2; wsk2 = new unsigned int; std::cout << "wsk2: " << wsk2 << " " << *wsk2 << std::endl; return 0; }
出力:
wsk2: 0x928e008 5 wsk2: 0x928e008 0
値への wsk2 の最初の割り当てと初期化5は期待どおりに動作します。ただし、初期化子を使用しない新しい unsigned int への wsk2 の 2 回目の割り当てと割り当ての結果は、値 0 になります。
さらに調査すると、新しい演算子には 2 つのバージョンがあることが明らかになります。
- wsk = 新しい unsigned int; // デフォルトで初期化されます (つまり、何も起こりません)
- wsk = new unsigned int(); // ゼロ初期化 (つまり 0 に設定)
この動作は配列にも適用されます:
- wsa = new unsigned int[5]; // デフォルトで初期化されます (つまり、何も起こりません)
- wsa = new unsigned int[5](); // ゼロ初期化 (つまり、すべての要素が 0 に設定)
placement new を使用したカスタム テストにより、ゼロ初期化が実際に行われることが確認されます:
#include <new> #include <iostream> int main() { unsigned int wsa[5] = {1, 2, 3, 4, 5}; unsigned int *wsp = new(wsa) unsigned int[5](); std::cout << wsa[0] << "\n"; // If these are zero then it worked as described. std::cout << wsa[1] << "\n"; // If they contain the numbers 1 - 5 then it failed. std::cout << wsa[2] << "\n"; std::cout << wsa[3] << "\n"; std::cout << wsa[4] << "\n"; }
出力:
0 0 0 0 0
これは、メモリを残すという一般的な誤解にもかかわらず、新しい演算子が括弧と一緒に使用された場合にゼロ初期化をサポートしていることを示しています初期化されていません。
以上が「新しい」オペレータはいつメモリをゼロに初期化しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

Cでの静的分析の適用には、主にメモリ管理の問題の発見、コードロジックエラーの確認、およびコードセキュリティの改善が含まれます。 1)静的分析では、メモリリーク、ダブルリリース、非初期化ポインターなどの問題を特定できます。 2)未使用の変数、死んだコード、論理的矛盾を検出できます。 3)カバー性などの静的分析ツールは、バッファーオーバーフロー、整数のオーバーフロー、安全でないAPI呼び出しを検出して、コードセキュリティを改善します。

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

Cは、現代のプログラミングにおいて依然として重要な関連性を持っています。 1)高性能および直接的なハードウェア操作機能により、ゲーム開発、組み込みシステム、高性能コンピューティングの分野で最初の選択肢になります。 2)豊富なプログラミングパラダイムとスマートポインターやテンプレートプログラミングなどの最新の機能は、その柔軟性と効率を向上させます。学習曲線は急ですが、その強力な機能により、今日のプログラミングエコシステムでは依然として重要です。

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。

c isnotdying; it'sevolving.1)c relelevantdueToitsversitileSileSixivisityinperformance-criticalApplications.2)thelanguageSlikeModulesandCoroutoUtoimveUsablive.3)despiteChallen
