ホームページ バックエンド開発 Python チュートリアル [CVHSV と RGB: 画像処理における HSV の理解と活用

[CVHSV と RGB: 画像処理における HSV の理解と活用

Dec 19, 2024 am 10:33 AM

前回の投稿では、プロットや明るさとコントラストの調整など、OpenCV での RGB イメージの操作の基本について説明しました。 RGB 色空間は、画面から発せられる光の強さで色を表現するため、コンピューターのディスプレイには最適ですが、人間が自然界で色を認識する方法とは一致しません。ここで、HSV (色相、彩度、明度) が介入します。HSV (色相、彩度、明度) は、人間の知覚に近い方法で色を表現するように設計された色空間です。
この投稿では、HSV について詳しく説明し、そのコンポーネントを理解し、そのアプリケーションを探索し、画像を強化するためのいくつかの素晴らしいトリックを学びます。

HSVとは何ですか?

HSV は、色相、彩度、および値の略です:

  • 色相 (H): これは、赤、緑、青などの色のタイプを指します。従来は円形スペクトル (0° ~ 360°) で度単位で測定されていましたが、OpenCV では、色相は 0 にスケールされます。 8 ビット整数に収まるには –179。マッピングは次のとおりです:
  • 0 (またはそれに近い) は依然として赤を表します。
  • 60 ~ 89 は緑に対応します。
  • 120 ~ 149 は青に対応します。
  • 140–179 は赤に戻り、円形スペクトルが完成します。
  • 彩度 (S): これは色の強度または純度を定義します。完全に飽和した色には灰色が含まれず、鮮やかです。彩度が低い色はより色あせて見えます。

  • 値 (V): 明るさと呼ばれることが多く、明るさや暗さを測定します。これらのコンポーネントを分離することにより、HSV は、特に色の検出や強調などのタスクで画像の分析と操作を容易にします。色。

これをよりよく理解するために、プロット ブローは色空間の値をうまく表現したものです

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

OpenCV での画像の HSV への変換

OpenCV で画像を HSV に変換するには、cv2.cvtColor() 関数を使用するのが簡単です。見てみましょう:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

ログイン後にコピー
ログイン後にコピー

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

一見すると、HSV プロットは奇妙に見えるかもしれません。ほとんどエイリアンのようです。これは、HSV のコンポーネント (特に色相) が RGB 値に直接マッピングされていないにもかかわらず、コンピューターが HSV を RGB 画像として表現しようとしているためです。例:

  • 色相 (H): 角度として表され、OpenCV では 0 ~ 179 の範囲になります (RGB チャネルのような 0 ~ 255 ではありません)。これにより、RGB ベースのプロットでは色相チャネルが主に青で表示されます。

次の例では、プロフィール画像ではなく、Flux ai 画像生成モデルで生成された暗い画像を使用します。プロフィール画像よりも HSV のより良いユーザーケースを提供し、その効果をよりよく確認できるため

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

ヒストグラムを通じて HSV を理解する

RGB と HSV の違いをよりよく理解するために、各チャネルのヒストグラムをプロットしてみましょう。コードは次のとおりです:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

ログイン後にコピー
ログイン後にコピー

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

ヒストグラムから、HSV チャネルが RGB とどのように異なるかがわかります。 HSV の色相チャネルは 0 ~ 179 の値を持ち、個別の色領域を表し、彩度と値は強度と明るさを処理します。

色相、彩度、明度の視覚化

ここで、HSV 画像を個々のコンポーネントに分割して、各チャネルが何を表すかをよりよく理解しましょう。

# Plot the histograms
plt.figure(figsize=(10, 6))

# RGB Histogram
plt.subplot(1, 2, 1)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("RGB Histogram")

# HSV Histogram
plt.subplot(1, 2, 2)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("HSV Histogram")
plt.show()

ログイン後にコピー

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

  • 色相: 明確な色の区別を表示し、画像内の主要な色を強調表示します。
  • 彩度: 明るい領域は鮮やかな色を表し、暗い領域はより落ち着いた灰色がかった色調を示します。
  • 値: 明るさの分布を強調表示し、明るい領域がより明るく表示されます。

HSV のトリック

1. 明るさの向上(値の均一化)

照明が不均一な画像の場合、値チャンネルを均等化すると、明るい領域に「グロー」効果を与えながら、暗い領域をより見やすくすることができます。

# Plot the individual HSV channels
plt.figure(figsize=(10, 6))
plt.subplot(1, 3, 1)
plt.imshow(hsv[:, :, 0], cmap='hsv')  # Hue
plt.title("Hue")
plt.subplot(1, 3, 2)
plt.imshow(hsv[:, :, 1], cmap='gray')  # Saturation
plt.title("Saturation")
plt.subplot(1, 3, 3)
plt.imshow(hsv[:, :, 2], cmap='gray')  # Value
plt.title("Value")
plt.tight_layout()
plt.show()
ログイン後にコピー

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

2. カラーエンハンスメント(彩度等化)

彩度チャンネルを高めると、画像内の色がより鮮明で鮮やかになります。

equ = cv2.equalizeHist(hsv[:, :, 2])  # Equalize the Value channel
new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Brightness Enhanced")
plt.tight_layout()
plt.show()
ログイン後にコピー

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

3. カラーフィルタリング (赤の分離)

色相チャンネルを使用すると、特定の色を分離できます。たとえば、赤のトーンを抽出するには:

equ = cv2.equalizeHist(hsv[:, :, 1])  # Equalize the Saturation channel
new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2]))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Color Enhanced")
plt.tight_layout()
plt.show()

ログイン後にコピー

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

このテクニックは、オブジェクト検出、色のセグメンテーション、さらには芸術的効果などのタスクに非常に役立ちます。

結論

HSV 色空間は、画像を分析および操作するための多用途かつ直感的な方法を提供します。 HSV は、色 (色相)、強度 (彩度)、明るさ (値) を分離することで、カラー フィルタリング、強調、セグメンテーションなどのタスクを簡素化します。 RGB はディスプレイに最適ですが、HSV は創造的で分析的な画像処理の可能性を広げます。

HSV のお気に入りのトリックは何ですか?以下であなたの考えを共有し、この鮮やかな色の世界を一緒に探索しましょう!

このバージョンには、読みやすさと理解を向上させるために、スムーズなフロー、詳細な説明、一貫した書式設定が組み込まれています。

以上が[CVHSV と RGB: 画像処理における HSV の理解と活用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles