ホームページ バックエンド開発 Golang リストを個々のゴルーチンによって処理される小さなチャンクに分割しているにもかかわらず、同時実行性が増加しても「moving_avg_concurrent2」のパフォーマンスが向上しないのはなぜですか?

リストを個々のゴルーチンによって処理される小さなチャンクに分割しているにもかかわらず、同時実行性が増加しても「moving_avg_concurrent2」のパフォーマンスが向上しないのはなぜですか?

Dec 23, 2024 pm 04:38 PM

Why is the performance of `moving_avg_concurrent2` not improving with increased concurrency, despite splitting the list into smaller chunks processed by individual goroutines?

同時実行の増加に伴って、moving_avg_concurrent2 のパフォーマンスが向上しないのはなぜですか?

moving_avg_concurrent2 は、リストをより小さな部分に分割し、単一の goroutine を使用して各部分を処理します。何らかの理由で (理由は明らかではありませんが)、1 つの goroutine を使用するこの関数は、moving_avg_serial4 よりも高速ですが、複数の goroutine を使用すると、moving_avg_serial4 よりもパフォーマンスが低下し始めます。

moving_avg_concurrent3 は、moving_avg_serial4 よりもはるかに遅いのはなぜですか?

ゴルーチンを使用する場合、moving_avg_concurrent3 のパフォーマンスは、moving_avg_serial4 よりも悪くなります。 num_goroutines を増やすとパフォーマンスが向上しますが、それでも move_avg_serial4 よりも悪くなります。

ゴルーチンは軽量ではありますが、完全に無料というわけではありません。発生するオーバーヘッドが非常に大きく、moving_avg_serial4 よりも遅くなる可能性はありますか?

はい、ゴルーチンは軽量ですが、無料ではありません。複数のゴルーチンを使用する場合、それらの起動、管理、スケジュール設定のオーバーヘッドが、並列処理の増加によるメリットを上回る可能性があります。

コード

関数:

// 返回包含输入移动平均值的列表(已提供,即未优化)
func moving_avg_serial(input []float64, window_size int) []float64 {
    first_time := true
    var output = make([]float64, len(input))
    if len(input) > 0 {
        var buffer = make([]float64, window_size)
        // 初始化缓冲区为 NaN
        for i := range buffer {
            buffer[i] = math.NaN()
        }
        for i, val := range input {
            old_val := buffer[int((math.Mod(float64(i), float64(window_size))))]
            buffer[int((math.Mod(float64(i), float64(window_size))))] = val
            if !NaN_in_slice(buffer) && first_time {
                sum := 0.0
                for _, entry := range buffer {
                    sum += entry
                }
                output[i] = sum / float64(window_size)
                first_time = false
            } else if i > 0 && !math.IsNaN(output[i-1]) && !NaN_in_slice(buffer) {
                output[i] = output[i-1] + (val-old_val)/float64(window_size) // 无循环的解决方案
            } else {
                output[i] = math.NaN()
            }
        }
    } else { // 空输入
        fmt.Println("moving_avg is panicking!")
        panic(fmt.Sprintf("%v", input))
    }
    return output
}

// 返回包含输入移动平均值的列表
// 重新排列控制结构以利用短路求值
func moving_avg_serial4(input []float64, window_size int) []float64 {
    first_time := true
    var output = make([]float64, len(input))
    if len(input) > 0 {
        var buffer = make([]float64, window_size)
        // 初始化缓冲区为 NaN
        for i := range buffer {
            buffer[i] = math.NaN()
        }
        for i := range input {
            //            fmt.Printf("in mvg_avg4: i=%v\n", i)
            old_val := buffer[int((math.Mod(float64(i), float64(window_size))))]
            buffer[int((math.Mod(float64(i), float64(window_size))))] = input[i]
            if first_time && !NaN_in_slice(buffer) {
                sum := 0.0
                for j := range buffer {
                    sum += buffer[j]
                }
                output[i] = sum / float64(window_size)
                first_time = false
            } else if i > 0 && !math.IsNaN(output[i-1]) /* && !NaN_in_slice(buffer)*/ {
                output[i] = output[i-1] + (input[i]-old_val)/float64(window_size) // 无循环的解决方案
            } else {
                output[i] = math.NaN()
            }
        }
    } else { // 空输入
        fmt.Println("moving_avg is panicking!")
        panic(fmt.Sprintf("%v", input))
    }
    return output
}

// 返回包含输入移动平均值的列表
// 将列表拆分为较小的片段以使用 goroutine,但不使用串行版本,即我们仅在开头具有 NaN,因此希望减少一些开销
// 仍然不能扩展(随着大小和 num_goroutines 的增加,性能下降)
func moving_avg_concurrent2(input []float64, window_size, num_goroutines int) []float64 {
    var output = make([]float64, window_size-1, len(input))
    for i := 0; i < window_size-1; i++ {
        output[i] = math.NaN()
    }
    if len(input) > 0 {
        num_items := len(input) - (window_size - 1)
        var barrier_wg sync.WaitGroup
        n := num_items / num_goroutines
        go_avg := make([][]float64, num_goroutines)
        for i := 0; i < num_goroutines; i++ {
            go_avg[i] = make([]float64, 0, num_goroutines)
        }

        for i := 0; i < num_goroutines; i++ {
            barrier_wg.Add(1)
            go func(go_id int) {
                defer barrier_wg.Done()

                // 计算边界
                var start, stop int
                start = go_id*int(n) + (window_size - 1) // 开始索引
                // 结束索引
                if go_id != (num_goroutines - 1) {
                    stop = start + n // 结束索引
                } else {
                    stop = num_items + (window_size - 1) // 结束索引
                }

                loc_avg := moving_avg_serial4(input[start-(window_size-1):stop], window_size)

                loc_avg = make([]float64, stop-start)
                current_sum := 0.0
                for i := start - (window_size - 1); i < start+1; i++ {
                    current_sum += input[i]
                }
                loc_avg[0] = current_sum / float64(window_size)
                idx := 1

                for i := start + 1; i < stop; i++ {
                    loc_avg[idx] = loc_avg[idx-1] + (input[i]-input[i-(window_size)])/float64(window_size)
                    idx++
                }

                go_avg[go_id] = append(go_avg[go_id], loc_avg...)

            }(i)
        }
        barrier_wg.Wait()

        for i := 0; i < num_goroutines; i++ {
            output = append(output, go_avg[i]...)
        }

    } else { // 空输入
        fmt.Println("moving_avg is panicking!")
        panic(fmt.Sprintf("%v", input))
    }
    return output
}

// 返回包含输入移动平均值的列表
// 模式改变,我们选择主工作者模式并生成将由 goroutine 计算的每个窗口
func compute_window_avg(input, output []float64, start, end int) {
    sum := 0.0
    size := end - start
    for _, val := range input[start:end] {
        sum += val
    }
    output[end-1] = sum / float64(size)
}

func moving_avg_concurrent3(input []float64, window_size, num_goroutines int) []float64 {
    var output = make([]float64, window_size-1, len(input))
    for i := 0; i < window_size-1; i++ {
        output[i] = math.NaN()
    }
    if len(input) > 0 {
        num_windows := len(input) - (window_size - 1)
        var output = make([]float64, len(input))
        for i := 0; i < window_size-1; i++ {
ログイン後にコピー

以上がリストを個々のゴルーチンによって処理される小さなチャンクに分割しているにもかかわらず、同時実行性が増加しても「moving_avg_concurrent2」のパフォーマンスが向上しないのはなぜですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Debian OpenSSLの脆弱性は何ですか Debian OpenSSLの脆弱性は何ですか Apr 02, 2025 am 07:30 AM

OpenSSLは、安全な通信で広く使用されているオープンソースライブラリとして、暗号化アルゴリズム、キー、証明書管理機能を提供します。ただし、その歴史的バージョンにはいくつかの既知のセキュリティの脆弱性があり、その一部は非常に有害です。この記事では、Debian SystemsのOpenSSLの共通の脆弱性と対応測定に焦点を当てます。 Debianopensslの既知の脆弱性:OpenSSLは、次のようないくつかの深刻な脆弱性を経験しています。攻撃者は、この脆弱性を、暗号化キーなどを含む、サーバー上の不正な読み取りの敏感な情報に使用できます。

Beego ormのモデルに関連付けられているデータベースを指定する方法は? Beego ormのモデルに関連付けられているデータベースを指定する方法は? Apr 02, 2025 pm 03:54 PM

Beegoormフレームワークでは、モデルに関連付けられているデータベースを指定する方法は?多くのBEEGOプロジェクトでは、複数のデータベースを同時に操作する必要があります。 Beegoを使用する場合...

フロントエンドからバックエンドの開発に変身すると、JavaやGolangを学ぶことはより有望ですか? フロントエンドからバックエンドの開発に変身すると、JavaやGolangを学ぶことはより有望ですか? Apr 02, 2025 am 09:12 AM

バックエンド学習パス:フロントエンドからバックエンドへの探査の旅は、フロントエンド開発から変わるバックエンド初心者として、すでにNodeJSの基盤を持っています...

Golandのカスタム構造ラベルが表示されない場合はどうすればよいですか? Golandのカスタム構造ラベルが表示されない場合はどうすればよいですか? Apr 02, 2025 pm 05:09 PM

Golandのカスタム構造ラベルが表示されない場合はどうすればよいですか?ゴーランドを使用するためにGolandを使用する場合、多くの開発者はカスタム構造タグに遭遇します...

GOの浮動小数点番号操作に使用されるライブラリは何ですか? GOの浮動小数点番号操作に使用されるライブラリは何ですか? Apr 02, 2025 pm 02:06 PM

GO言語の浮動小数点数操作に使用されるライブラリは、精度を確保する方法を紹介します...

Go's Crawler Collyのキュースレッドの問題は何ですか? Go's Crawler Collyのキュースレッドの問題は何ですか? Apr 02, 2025 pm 02:09 PM

Go Crawler Collyのキュースレッドの問題は、Go言語でColly Crawler Libraryを使用する問題を調査します。 �...

DebianでMongoDB自動拡張を構成する方法 DebianでMongoDB自動拡張を構成する方法 Apr 02, 2025 am 07:36 AM

この記事では、自動拡張を実現するためにDebianシステムでMongodbを構成する方法を紹介します。主な手順には、Mongodbレプリカセットとディスクスペース監視のセットアップが含まれます。 1。MongoDBのインストール最初に、MongoDBがDebianシステムにインストールされていることを確認してください。次のコマンドを使用してインストールします。sudoaptupdatesudoaptinstinstall-yymongodb-org2。mongodbレプリカセットMongodbレプリカセットの構成により、自動容量拡張を達成するための基礎となる高可用性とデータ冗長性が保証されます。 Mongodbサービスを開始:Sudosystemctlstartmongodsudosys

Redisストリームを使用してGO言語でメッセージキューを実装する場合、user_idタイプの変換の問題を解決する方法は? Redisストリームを使用してGO言語でメッセージキューを実装する場合、user_idタイプの変換の問題を解決する方法は? Apr 02, 2025 pm 04:54 PM

redisstreamを使用してGo言語でメッセージキューを実装する問題は、GO言語とRedisを使用することです...

See all articles