NumPy 配列を効率的に位置調整 (シフト) するにはどうすればよいですか?
NumPy 配列の正当性
問題:
2048 ゲームのデモで使用するために、行列内のコンテンツをシフトするためのコードを最適化する方法が求められています。具体的には、行列内のゼロ以外の値を左、右、上、または下に移動するには関数が必要です。
NumPy を使用した解決策:
提供されたコードは、次のようなベクトル化されたアプローチを提供します。別の投稿:
def justify(a, invalid_val=0, axis=1, side='left'): """ Justifies a 2D array Parameters ---------- A : ndarray Input array to be justified axis : int Axis along which justification is to be made side : str Direction of justification. It could be 'left', 'right', 'up', 'down' It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0. """ if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if (side=='up') | (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[mask] else: out.T[justified_mask.T] = a.T[mask.T] return out
サンプル実行:
In [473]: a # input array Out[473]: array([[1, 0, 2, 0], [3, 0, 4, 0], [5, 0, 6, 0], [6, 7, 0, 8]]) In [474]: justify(a, axis=0, side='up') Out[474]: array([[1, 7, 2, 8], [3, 0, 4, 0], [5, 0, 6, 0], [6, 0, 0, 0]]) In [475]: justify(a, axis=0, side='down') Out[475]: array([[1, 0, 0, 0], [3, 0, 2, 0], [5, 0, 4, 0], [6, 7, 6, 8]]) In [476]: justify(a, axis=1, side='left') Out[476]: array([[1, 2, 0, 0], [3, 4, 0, 0], [5, 6, 0, 0], [6, 7, 8, 0]]) In [477]: justify(a, axis=1, side='right') Out[477]: array([[0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 5, 6], [0, 6, 7, 8]])
一般的なケース(ndarray):
一般的な n 次元配列の場合、コードは次のように変更できます:
def justify_nd(a, invalid_val, axis, side): """ Justify ndarray for the valid elements (that are not invalid_val). Parameters ---------- A : ndarray Input array to be justified invalid_val : scalar invalid value axis : int Axis along which justification is to be made side : str Direction of justification. Must be 'front' or 'end'. So, with 'front', valid elements are pushed to the front and with 'end' valid elements are pushed to the end along specified axis. """ pushax = lambda a: np.moveaxis(a, axis, -1) if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[mask] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)] return out
サンプル実行 (ndarray):
In [87]: a Out[87]: array([[[54, 57, 0, 77], [77, 0, 0, 31], [46, 0, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [ 0, 47, 0, 87], [82, 19, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 0], [29, 0, 0, 49], [42, 75, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 38], [44, 10, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]])
「前」へ、軸 =0 に沿って :
In [88]: justify_nd(a, invalid_val=0, axis=0, side='front') Out[88]: array([[[54, 57, 0, 77], [77, 47, 0, 31], [46, 19, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [29, 10, 0, 87], [82, 75, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 38], [44, 0, 0, 49], [42, 0, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 0], [ 0, 0, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]])
軸 =1 に沿って:
In [89]: justify_nd(a, invalid_val=0, axis=1, side='front') Out[89]: array([[[54, 57, 68, 77], [77, 22, 0, 31], [46, 0, 0, 98], [98, 0, 0, 75]], [[49, 47, 57, 98], [82, 19, 0, 87], [79, 89, 0, 90], [ 0, 0, 0, 74]], [[29, 75, 84, 49], [42, 41, 0, 67], [42, 0, 0, 33], [ 0, 0, 0, 0]], [[44, 10, 0, 38], [63, 14, 0, 0], [89, 0, 0, 0], [ 0, 0, 0, 0]]])
軸=2 に沿って:
以上がNumPy 配列を効率的に位置調整 (シフト) するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。
