#include <math.h> #include <stdio.h> #include <string.h> #include <unistd.h> typedef struct { double a1; double a2; double a3; } singleRow; typedef struct { singleRow a1; singleRow a2; singleRow a3; } Matrix; singleRow multiply(singleRow m1, Matrix m2) { singleRow res; res.a1 = m1.a1 * m2.a1.a1 + m1.a2 * m2.a2.a1 + m1.a3 * m2.a3.a1; res.a2 = m1.a1 * m2.a1.a2 + m1.a2 * m2.a2.a2 + m1.a3 * m2.a3.a2; res.a3 = m1.a1 * m2.a1.a3 + m1.a2 * m2.a2.a3 + m1.a3 * m2.a3.a3; return res; } int main() { int screen_width = 80, height = 22; char buffer[1760]; float zBuffer[1760]; float A = 0, B = 0; int R2 = 2, R1 = 1; printf("\x1b[2J"); while (1) { memset(buffer, ' ', 1760); memset(zBuffer, 0, 7040); for (float theta = 0; theta < 6.28; theta += 0.07) { for (float phi = 0; phi < 6.28; phi += 0.02) { singleRow circle = {2 + cos(theta), sin(theta), 0}; // rotation on Y-axis Matrix Ry = {{cos(phi), 0, sin(phi)}, {0, 1, 0}, {-sin(phi), 0, cos(phi)}}; // rotation on X-axis Matrix Rx = {{1, 0, 0}, {0, cos(A), sin(A)}, {0, -sin(A), cos(A)}}; // rotation on Z-axis Matrix Rz = {{cos(B), sin(B), 0}, {-sin(B), cos(B), 0}, {0, 0, 1}}; singleRow donut = multiply(circle, Ry); singleRow rotateX = multiply(donut, Rx); // We will consider it as [Nx, Ny, Nz] singleRow spinningDonut = multiply(rotateX, Rz); float reciNz = 1 / (spinningDonut.a3 + 5); int x = 40 + 30 * spinningDonut.a1 * reciNz; int y = 12 + 15 * spinningDonut.a2 * reciNz; // o is index of current buffer int o = x + screen_width * y; int L = 8 * (spinningDonut.a2 - spinningDonut.a3 + 2 * cos(B) * sin(A) * sin(phi) - 2 * cos(phi) * cos(theta) * sin(B) - 2 * cos(phi) * sin(B) + 2 * cos(A) * sin(phi) ); // donut luminicity will be seen by these characters // these 12 char charOut[] = ".,-~:;=!*#$@"; if (x < screen_width && y < height && zBuffer[o] < reciNz) { zBuffer[o] = reciNz; // If L < 0, . will be buffer buffer[o] = charOut[L > 0 ? L : 0]; } } } // Clear screen printf("\x1b[H"); for (int i = 0; i <1761; i++) { // On every 80th character, new line will be printed // If there's a reminder then buffer printed putchar(i % 80 ? buffer[i] : 10); A += 0.00004; B += 0.00002; } // Timer to slow down speed a bit usleep(10000); } return 0; }
import java.util.Arrays; class singleRow { public double a1; public double a2; public double a3; public singleRow(double a1, double a2, double a3) { this.a1 = a1; this.a2 = a2; this.a3 = a3; } } class Matrix { public singleRow a1; public singleRow a2; public singleRow a3; public Matrix(singleRow a1, singleRow a2, singleRow a3) { this.a1 = new singleRow(a1.a1, a1.a2, a1.a3); this.a2 = new singleRow(a2.a1, a2.a2, a2.a3); this.a3 = new singleRow(a3.a1, a3.a2, a3.a3); } public static singleRow multiply(singleRow m1, Matrix m2) { singleRow res = new singleRow(0, 0, 0); res.a1 = (m1.a1 * m2.a1.a1) + (m1.a2 * m2.a2.a1) + (m1.a3 * m2.a3.a1); res.a2 = (m1.a1 * m2.a1.a2) + (m1.a2 * m2.a2.a2) + (m1.a3 * m2.a3.a2); res.a3 = (m1.a1 * m2.a1.a3) + (m1.a2 * m2.a2.a3) + (m1.a3 * m2.a3.a3); return res; } } public class Main { public static void main() { int screen_width = 80, height = 22; char[] buffer = new char[1760]; double[] zBuffer = new double[1760]; double A = 0, B = 0; int R2 = 2, R1 = 1; System.out.print("\u001b[2J"); while (true) { Arrays.fill(buffer, 0, 1760, ' '); Arrays.fill(zBuffer, 0, 1760, 0); for (float theta = 0; theta < 6.28; theta += 0.07) { for (float phi = 0; phi < 6.28; phi += 0.02) { singleRow circle = {2 + Math.cos(theta), Math.sin(theta), 0}; // rotation on Y-axis Matrix Ry = new Matrix( new singleRow(Math.cos(phi), 0, Math.sin(phi)), new singleRow(0, 1, 0), new singleRow(-Math.sin(phi), 0, Math.cos(phi)) ); // rotation on X-axis Matrix Rx = new Matrix( new singleRow(1, 0, 0), new singleRow(0, Math.cos(A), Math.sin(A)), new singleRow(0, -Math.sin(A), Math.cos(A)) ); // rotation on Z-axis Matrix Rz = new Matrix( new singleRow(Math.cos(B), Math.sin(B), 0), new singleRow(-Math.sin(B), Math.cos(B), 0), new singleRow(0, 0, 1) ); singleRow donut = Matrix.multiply(circle, Ry); singleRow rotateX = Matrix.multiply(donut, Rx); // We will consider it as [Nx, Ny, Nz] singleRow spinningDonut = Matrix.multiply(rotateX, Rz); float reciNz = 1 / (spinningDonut.a3 + 5); int x = 40 + 30 * spinningDonut.a1 * reciNz; int y = 12 + 15 * spinningDonut.a2 * reciNz; // o is index of current buffer int o = x + screen_width * y; int L = 8 * (spinningDonut.a2 - spinningDonut.a3 + 2 * Math.cos(B) * Math.sin(A) * Math.sin(phi) - 2 * Math.cos(phi) * Math.cos(theta) * Math.sin(B) - 2 * Math.cos(phi) * Math.sin(B) + 2 * Math.cos(A) * Math.sin(phi) ); // donut luminicity will be seen by these characters // these 12 char[] charOpts = {'.', ',', '-', '~', ':', ';', '=', '!', '*', '#', '$', '@'}; if (x < screen_width && y < height && zBuffer[o] < reciNz) { zBuffer[o] = reciNz; // If L < 0, . will be buffer buffer[o] = charOut[L > 0 ? L : 0]; } } } // Clear screen System.out.print("\u001b[H"); for (int i = 0; i <1761; i++) { // On every 80th character, new line will be printed // If there's a reminder then buffer printed System.out.print(i % 80 ? buffer[i] : 10); A += 0.00004; B += 0.00002; } } } }
以上が昔の耳のようなドーナツを解説 前編・後編)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。