「顔表情認識」プロジェクトは、畳み込みニューラル ネットワーク (CNN) 手法を使用して人間の表情を認識することを目的としています。 CNN アルゴリズムを適用して、グレースケール形式の顔画像などの視覚データを分析し、喜び、悲しみ、怒り、驚き、恐怖、嫌悪感、中立の 7 つの基本的な表現カテゴリに分類します。このモデルは FER2013 データセットを使用してトレーニングされ、500 エポックのトレーニング後に 91.67% の精度を達成することができました。
この「顔の表情認識」プロジェクトは、人工知能コースの最終プロジェクトであり、このプロジェクトでは次のような達成する必要がある成果があります。
精度のレベルに影響を与える照明の違いの問題。
照明の変動はモデルの精度に影響を与える可能性があります。これを克服するために、データの正規化が実行され、画像内の照明がより均一になり、顔画像のパターンがよりよく認識されるようになります。
同様の複雑な式。
「怖い」や「驚いた」などの一部の表現は、モデルが区別するのが難しい類似した特徴を持っています。実装されたソリューションは、回転、ズーム、反転、コントラスト変更などのデータ拡張を実行して、新しいデータに対するモデルの汎化能力を高めることです。
かなり限定されたデータセット
FER2013 データセットは非常に大規模ですが、世界中の顔のバリエーションの全範囲をカバーしているわけではありません。データセットを強化するために、データ拡張技術を使用し、他の関連ソースからのデータを追加して、顔の表情をより適切に表現しました。
このプロジェクトは、人工知能ベースのシステムを使用して顔の表情を認識する方法についての深い洞察を提供します。開発プロセスは次の重要性を示しています:
このプロジェクトは、既存の課題を克服することにより、人間とコンピューターのインタラクション、感情分析、心理モニタリングなどのさまざまなアプリケーションに適用できる表情認識モデルの構築に成功しました。
以上がプロジェクト Mata Kuliah 人工知能 - 顔表情認識の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。