PyTorch の ColorJitter

Patricia Arquette
リリース: 2024-12-30 09:20:10
オリジナル
742 人が閲覧しました

コーヒー買ってきて☕

ColorJitter() は、以下に示すように、0 個以上の画像の明るさ、コントラスト、彩度、色相を変更できます。

*メモ:

  • 初期化の最初の引数は明るさ(Optional-Default:0-Type:float または tuple/list(float)) です。 *メモ:
    • 明るさの範囲[最小、最大]です。
    • 0
    • 単一の値は [max(0, 1-明るさ), 1 明るさ] に変換されます。
    • タプルまたはリストは 2 つの要素を持つ 1D でなければなりません。 *最初の要素は 2 番目の要素以下である必要があります。
  • 初期化の 2 番目の引数はcontrast(Optional-Default:0-Type:float または tuple/list(float)) です。 *メモ:
    • コントラストの範囲 [最小、最大]。
    • 0
    • 単一の値は [max(0, 1-コントラスト), 1 コントラスト] に変換されます。
    • タプルまたはリストは 2 つの要素を持つ 1D でなければなりません。 *最初の要素は 2 番目の要素以下である必要があります。
  • 初期化の 3 番目の引数は saturation(Optional-Default:0-Type:float または tuple/list(float)) です。 *メモ:
    • 彩度の範囲[最小、最大]です。
    • 0
    • 単一の値は [max(0, 1-saturation), 1 saturation] に変換されます。
    • タプルまたはリストは 2 つの要素を持つ 1D でなければなりません。 *最初の要素は 2 番目の要素以下である必要があります。
  • 初期化の 4 番目の引数は hue(Optional-Default:0-Type:float または tuple/list(float)) です。 *メモ:
    • 色相 [最小、最大] の範囲です。
    • -0.5
    • 単一の値は [-hue, hue] に変換されます。
    • タプルまたはリストは 2 つの要素を持つ 1D でなければなりません。 *最初の要素は 2 番目の要素以下である必要があります。
  • 最初の引数は img(Required-Type:PIL Image or tensor/tuple/list(int or float)) です。 *メモ:
    • 2D または 3D である必要があります。 3D の場合、最も深い D には 1 つの要素が必要です。
    • img=.
    • は使用しないでください。
  • V1 または V2 に従って v2 を使用することをお勧めしますか?どれを使えばいいのでしょうか?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter

colorjitter = ColorJitter()
colorjitter = ColorJitter(brightness=0,
                          contrast=0,
                          saturation=0,
                          hue=0)
colorjitter = ColorJitter(brightness=(1.0, 2.0),
                          contrast=(1.0, 1.0),
                          saturation=(1.0, 1.0),
                          hue=(0.0, 0.0))
colorjitter
# ColorJitter()

print(colorjitter.brightness)
# None

print(colorjitter.contrast)
# None

print(colorjitter.saturation)
# None

print(colorjitter.hue)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=ColorJitter()
    # colorjitter = ColorJitter(brightness=0,
    #                           contrast=0,
    #                           saturation=0,
    #                           hue=0)
    # transform=ColorJitter(brightness=(1.0, 1.0),
    #                       contrast=(1.0, 1.0),
    #                       saturation=(1.0, 1.0),
    #                       hue=(0.0, 0.0))
)

p2bright_data = OxfordIIITPet( # `p` is plus.
    root="data",
    transform=ColorJitter(brightness=2.0)
    # transform=ColorJitter(brightness=(0.0, 3.0))
)

p2p2bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(2.0, 2.0))
)

p05p05bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(0.5, 0.5))
)

p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=2.0)
    # transform=ColorJitter(contrast=(0.0, 3.0))
)

p2p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(2.0, 2.0))
)

p05p05contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(0.5, 0.5))
)

p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=2.0)
    # transform=ColorJitter(saturation=(0.0, 3.0))
)

p2p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(2.0, 2.0))
)

p05p05satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(0.5, 0.5))
)

p05hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=0.5)
    # transform=ColorJitter(hue=(-0.5, 0.5))
)

p025p025hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=(0.25, 0.25))
)

m025m025hue_data = OxfordIIITPet( # `m` is minus.
    root="data",
    transform=ColorJitter(hue=(-0.25, -0.25))
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2bright_data, main_title="p2bright_data")
show_images(data=p2p2bright_data, main_title="p2p2bright_data")
show_images(data=p05p05bright_data, main_title="p05p05bright_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2contra_data, main_title="p2contra_data")
show_images(data=p2p2contra_data, main_title="p2p2contra_data")
show_images(data=p05p05contra_data, main_title="p05p05contra_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2satura_data, main_title="p2satura_data")
show_images(data=p2p2satura_data, main_title="p2p2satura_data")
show_images(data=p05p05satura_data, main_title="p05p05satura_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p05hue_data, main_title="p05hue_data")
show_images(data=p025p025hue_data, main_title="p025p025hue_data")
show_images(data=m025m025hue_data, main_title="m025m025hue_data")
ログイン後にコピー
ログイン後にコピー

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter

colorjitter = ColorJitter()
colorjitter = ColorJitter(brightness=0,
                          contrast=0,
                          saturation=0,
                          hue=0)
colorjitter = ColorJitter(brightness=(1.0, 2.0),
                          contrast=(1.0, 1.0),
                          saturation=(1.0, 1.0),
                          hue=(0.0, 0.0))
colorjitter
# ColorJitter()

print(colorjitter.brightness)
# None

print(colorjitter.contrast)
# None

print(colorjitter.saturation)
# None

print(colorjitter.hue)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=ColorJitter()
    # colorjitter = ColorJitter(brightness=0,
    #                           contrast=0,
    #                           saturation=0,
    #                           hue=0)
    # transform=ColorJitter(brightness=(1.0, 1.0),
    #                       contrast=(1.0, 1.0),
    #                       saturation=(1.0, 1.0),
    #                       hue=(0.0, 0.0))
)

p2bright_data = OxfordIIITPet( # `p` is plus.
    root="data",
    transform=ColorJitter(brightness=2.0)
    # transform=ColorJitter(brightness=(0.0, 3.0))
)

p2p2bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(2.0, 2.0))
)

p05p05bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(0.5, 0.5))
)

p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=2.0)
    # transform=ColorJitter(contrast=(0.0, 3.0))
)

p2p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(2.0, 2.0))
)

p05p05contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(0.5, 0.5))
)

p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=2.0)
    # transform=ColorJitter(saturation=(0.0, 3.0))
)

p2p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(2.0, 2.0))
)

p05p05satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(0.5, 0.5))
)

p05hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=0.5)
    # transform=ColorJitter(hue=(-0.5, 0.5))
)

p025p025hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=(0.25, 0.25))
)

m025m025hue_data = OxfordIIITPet( # `m` is minus.
    root="data",
    transform=ColorJitter(hue=(-0.25, -0.25))
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2bright_data, main_title="p2bright_data")
show_images(data=p2p2bright_data, main_title="p2p2bright_data")
show_images(data=p05p05bright_data, main_title="p05p05bright_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2contra_data, main_title="p2contra_data")
show_images(data=p2p2contra_data, main_title="p2p2contra_data")
show_images(data=p05p05contra_data, main_title="p05p05contra_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2satura_data, main_title="p2satura_data")
show_images(data=p2p2satura_data, main_title="p2p2satura_data")
show_images(data=p05p05satura_data, main_title="p05p05satura_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p05hue_data, main_title="p05hue_data")
show_images(data=p025p025hue_data, main_title="p025p025hue_data")
show_images(data=m025m025hue_data, main_title="m025m025hue_data")
ログイン後にコピー
ログイン後にコピー

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

以上がPyTorch の ColorJitterの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:dev.to
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
著者別の最新記事
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート