補間を使用する従来の方法では、画質が低下します。最高の品質を実現するには、次の手順に従います:
1. 補間を無効にします:
canvas, img { image-rendering: optimizeQuality; image-rendering: -moz-crisp-edges; image-rendering: -webkit-optimize-contrast; image-rendering: optimize-contrast; -ms-interpolation-mode: nearest-neighbor; }
2. 画像サイズを段階的に縮小します:
3. ピクセルレベルのアルゴリズムを使用します (非補間アルゴリズム):
コードサンプル:
// GameAlchemist 算法 function downScaleCanvas(cv, scale) { if (!(scale < 1) || !(scale > 0)) throw ('scale must be a positive number <1 '); var sqScale = scale * scale; // square scale = area of source pixel within target var sw = cv.width; // source image width var sh = cv.height; // source image height var tw = Math.floor(sw * scale); // target image width var th = Math.floor(sh * scale); // target image height var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array var tX = 0, tY = 0; // rounded tx, ty var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y // weight is weight of current source point within target. // next weight is weight of current source point within next target's point. var crossX = false; // does scaled px cross its current px right border ? var crossY = false; // does scaled px cross its current px bottom border ? var sBuffer = cv.getContext('2d'). getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb var sR = 0, sG = 0, sB = 0; // source's current point r,g,b /* untested ! var sA = 0; //source alpha */ for (sy = 0; sy < sh; sy++) { ty = sy * scale; // y src position within target tY = 0 | ty; // rounded : target pixel's y yIndex = 3 * tY * tw; // line index within target array crossY = (tY != (0 | ty + scale)); if (crossY) { // if pixel is crossing botton target pixel wy = (tY + 1 - ty); // weight of point within target pixel nwy = (ty + scale - tY - 1); // ... within y+1 target pixel } for (sx = 0; sx < sw; sx++, sIndex += 4) { tx = sx * scale; // x src position within target tX = 0 | tx; // rounded : target pixel's x tIndex = yIndex + tX * 3; // target pixel index within target array crossX = (tX != (0 | tx + scale)); if (crossX) { // if pixel is crossing target pixel's right wx = (tX + 1 - tx); // weight of point within target pixel nwx = (tx + scale - tX - 1); // ... within x+1 target pixel } sR = sBuffer[sIndex ]; // retrieving r,g,b for curr src px. sG = sBuffer[sIndex + 1]; sB = sBuffer[sIndex + 2]; /* !! untested : handling alpha !! sA = sBuffer[sIndex + 3]; if (!sA) continue; if (sA != 0xFF) { sR = (sR * sA) >> 8; // or use /256 instead ?? sG = (sG * sA) >> 8; sB = (sB * sA) >> 8; } */ if (!crossX && !crossY) { // pixel does not cross // just add components weighted by squared scale. tBuffer[tIndex ] += sR * sqScale; tBuffer[tIndex + 1] += sG * sqScale; tBuffer[tIndex + 2] += sB * sqScale; } else if (crossX && !crossY) { // cross on X only w = wx * scale; // add weighted component for current px tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // add weighted component for next (tX+1) px nw = nwx * scale tBuffer[tIndex + 3] += sR * nw; tBuffer[tIndex + 4] += sG * nw; tBuffer[tIndex + 5] += sB * nw; } else if (crossY && !crossX) { // cross on Y only w = wy * scale; // add weighted component for current px tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // add weighted component for next (tY+1) px nw = nwy * scale tBuffer[tIndex + 3 * tw ] += sR * nw; tBuffer[tIndex + 3 * tw + 1] += sG * nw; tBuffer[tIndex + 3 * tw + 2] += sB * nw; } else { // crosses both x and y : four target points involved // add weighted component for current px w = wx * wy; tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // for tX + 1; tY px nw = nwx * wy; tBuffer[tIndex + 3] += sR * nw; tBuffer[tIndex + 4] += sG * nw; tBuffer[tIndex + 5] += sB * nw; // for tX ; tY + 1 px nw = wx * nwy; tBuffer[tIndex + 3 * tw ] += sR * nw; tBuffer[tIndex + 3 * tw + 1] += sG * nw; tBuffer[tIndex + 3 * tw + 2] += sB * nw; // for tX + 1 ; tY +1 px nw = nwx * nwy; tBuffer[tIndex + 3 * tw + 3] += sR * nw; tBuffer[tIndex + 3 * tw + 4] += sG * nw; tBuffer[tIndex + 3 * tw + 5] += sB * nw; } } // end for sx } // end for sy // create result canvas var resCV = document.createElement('canvas'); resCV.width = tw; resCV.height = th; var resCtx = resCV.getContext('2d'); var imgRes = resCtx.getImageData(0, 0, tw, th); var tByteBuffer = imgRes.data; // convert float32 array into a UInt8Clamped Array var pxIndex = 0; //
以上がHTML5 Canvas を使用して画像を高品質にダウンスケールする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。