私が働いている会社では Plotly チャートを広く使用しています。これらを使用すると、見栄えの良いインタラクティブなグラフィックを簡単に作成できます。 Plotly Express ライブラリを介した Python エクスペリエンスは素晴らしく、始めるためのハードルは低いです。
Plotly グラフには 2 つの主な使用例があります:
一般的な PDF レポートの場合、特定の指標の時間の経過に伴う変化、多数のカテゴリにわたる値の分布、または隣り合う異なるカテゴリの比較を示すために、5 ~ 20 個の図を使用します。
PDF レポートを作成するには、Weasyprint、Jinja、および Plotly チャートを組み合わせて使用します。レポートを PDF としてレンダリングするには、まずすべてのグラフを画像としてレンダリングする必要があります。
これを行うために、素晴らしい Kaleido パッケージを使用します。 Chrome ブラウザを使用してグラフをレンダリングし、画像として保存します。 API は簡単に使用できます。
from kaleido.scopes.plotly import PlotlyScope scope = PlotlyScope() img_bytes = scope.transform( figure=figure, format="png", width=1000, height=1000, scale=4, )
これにより、Figure 内の図が高さと幅 1000 ピクセル、レンダリング スケール 4 の画像としてレンダリングされます (つまり、画像の実際の寸法は 4000 ピクセル x 4000 ピクセル)。スケールが大きいほど、最終画像の DPI が高くなり、見栄えが良くなり、最終的な PDF が大きくなります。
グラフのレンダリングには少し時間がかかり、多数 (10 ~ 20) のグラフをレンダリングすると、プログラムの実行時間のかなりの部分を占めることになります。 PDF レンダリング パイプラインを高速化するために、次のソリューションをデプロイしました。
内部的には、Kaleido は、グラフを画像としてレンダリングする問題を、付属の Chrome ウェブブラウザにアウトソーシングしているだけです。これは、Python 自体の場合、この画像のレンダリングは基本的に I/O を待機していることを意味します。
この特定のプロセスを高速化するには、I/O を待つだけなので、マルチスレッドを使用できます。
次のようなランダムな図を作成することから始めましょう:
import pandas as pd import numpy as np import plotly.graph_objects as go def get_random_figure() -> go.Figure: n_bars = 50 dates = pd.date_range(start="2021-01-01", end="2021-12-31", freq="M") figure = go.Figure() for i in range(n_bars): values = np.random.rand(len(dates)) figure.add_trace(go.Bar(x=dates, y=values, name=f"Label {i+1}")) figure.update_layout( dict( barmode="group", legend=dict(orientation="h", yanchor="top", xanchor="left"), ) ) figure.update_layout(yaxis=dict(tickformat=".0%"), xaxis=dict(showgrid=False)) return figure
上記のコードを使用して、Figure を画像に変換できます。
from kaleido.scopes.plotly import PlotlyScope import plotly.graph_objects as go def figure_to_bytes(figure: go.Figure) -> bytes: scope = PlotlyScope() return scope.transform(figure=figure, format="png", width=1000, height=1000, scale=4)
そして最後に、後で使用するために次の定義も行います。
def transform_random_figure() -> bytes: return figure_to_bytes(get_random_figure())
Python の GIL (グローバル インタプリタ ロック) により、同時に 1 つのスレッドだけが Python コードを実行できることをご存じないかもしれません。グラフから画像への変換は Python コードではないため、スレッドを利用して多数のグラフの変換を同時に開始し、結果を収集できます。
そのために、ヘルパー クラスを定義します。
from kaleido.scopes.plotly import PlotlyScope scope = PlotlyScope() img_bytes = scope.transform( figure=figure, format="png", width=1000, height=1000, scale=4, )
このクラスは、変換の結果 (つまり、画像のバイト) を取得するのに役立ちます。
次にしなければならないことは、Python でスレッドを操作するための標準パターンに従うことです。
スレッドはそれぞれ、transform_random_figure() を呼び出してバイトを返す必要があります。この場合、10 個のスレッドを開始します。
import pandas as pd import numpy as np import plotly.graph_objects as go def get_random_figure() -> go.Figure: n_bars = 50 dates = pd.date_range(start="2021-01-01", end="2021-12-31", freq="M") figure = go.Figure() for i in range(n_bars): values = np.random.rand(len(dates)) figure.add_trace(go.Bar(x=dates, y=values, name=f"Label {i+1}")) figure.update_layout( dict( barmode="group", legend=dict(orientation="h", yanchor="top", xanchor="left"), ) ) figure.update_layout(yaxis=dict(tickformat=".0%"), xaxis=dict(showgrid=False)) return figure
start() メソッドは、実際のロジックを開始するスレッドの run() メソッドも呼び出します (つまり、指定された関数を実行します。この場合、transform_random_figure() を意味します)。
結果を収集するには、スレッドの join() メソッドを使用し、結果をファイルに書き込みます。
from kaleido.scopes.plotly import PlotlyScope import plotly.graph_objects as go def figure_to_bytes(figure: go.Figure) -> bytes: scope = PlotlyScope() return scope.transform(figure=figure, format="png", width=1000, height=1000, scale=4)
ここでの主な考え方は、グラフを画像に変換したいときはいつでもスレッドを開始し、このスレッドはグラフがバックグラウンドで完了するのを待つということです。
レポート全体をまとめたら、すべてのスレッドで join() を呼び出し、すべてのグラフの画像を取得してレポートに組み込みます。
この方法では、グラフなしでレポート全体をすでに生成でき、各グラフが変換されるのを待たずに済むので時間を節約できます。
要約すると、複数の Plotly チャートを画像に変換する場合は、Python 標準ライブラリのマルチスレッド モジュールを使用して、変換プロセスを高速化します。
transform() 呼び出しをスレッドに移動し、すべてのスレッドが終了するのを待つだけで、非常に簡単に実行できます。
def transform_random_figure() -> bytes: return figure_to_bytes(get_random_figure())
以上がPlotly チャートを画像に並行して変換するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。