SQL の PARTITION BY と GROUP BY: 違いは何ですか?
SQL の PARTITION BY と GROUP BY の違いを理解する
パーティション化とグループ化は、データの集計と処理のための SQL の重要な操作です。 PARTITION BY と GROUP BY はどちらもデータの分割と集計を伴いますが、機能と用途が大きく異なります。
PARTITION BY: ウィンドウ関数の分割
PARTITION BY は主に、定義されたパーティションに基づいて計算を実行する ROW_NUMBER() などのウィンドウ関数と組み合わせて使用されます。パーティション キーと呼ばれる、指定された列に基づいてデータを個別のグループに分割します。各パーティションは独立して動作するため、ウィンドウ関数はそれぞれのパーティションに関連する値を計算できます。
たとえば、次のクエリでは PARTITION BY を使用して、各顧客 ID 内の行に連続番号を割り当てます。
SELECT ROW_NUMBER() OVER (PARTITION BY customerId ORDER BY orderId) AS OrderNumberForThisCustomer FROM Orders;
GROUP BY: データをグループに集約
GROUP BY、一方、 は、共通の値に基づいて複数の行にわたるデータを集計するように設計されています。これは、グループ化キーと呼ばれる、指定された列内の値が一致する行をグループ化します。次に、COUNT(*) や SUM() などの集計関数が各グループに適用されます。
次のクエリは、GROUP BY を使用して各顧客の合計注文数を計算します。
SELECT customerId, COUNT(*) AS orderCount FROM Orders GROUP BY customerId;
主な違い
PARTITION BY と PARTITION BY の主な違いGROUP BY は次のように要約できます:
- 目的: PARTITION BY はウィンドウ関数のデータを分割し、GROUP BY はデータをグループに集約します。
- 結果への影響: PARTITION BY は返される行の数を減らしませんが、GROUP は返されます。 BY は通常、グループ化と集計によって行数を減らします。
- ウィンドウ関数: PARTITION BY はウィンドウ関数と互換性があり、パーティション内での計算が可能です。 GROUP BY はウィンドウ関数をサポートしません。
- 柔軟性: PARTITION BY では複数の列に基づいた柔軟なパーティショニングが可能ですが、GROUP BY は指定された列に基づいたグループ化に限定されます。
以上がSQL の PARTITION BY と GROUP BY: 違いは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。
