ホームページ > バックエンド開発 > Python チュートリアル > Python と FaceNet による顔認識

Python と FaceNet による顔認識

Patricia Arquette
リリース: 2025-01-13 06:36:42
オリジナル
218 人が閲覧しました

このガイドでは、facenet-pytorch を使用した顔の類似性検出ツールを説明します。このツールは、FaceNet モデルの高品質の顔埋め込みを利用して、ターゲット画像を複数の候補と比較して、最も近いものを特定します。 実装を見てみましょう。

必須のツールとライブラリ

  1. PyTorch: 深層学習操作の基盤。
  2. FaceNet-PyTorch: 顔検出と埋め込み生成用の事前トレーニング済みモデルを提供します。
  3. 枕 (PIL): 画像操作タスクを処理します。
  4. Matplotlib: 結果の視覚化に使用されます。

2 つのコア モデルが採用されています:

  • MTCNN: 画像内の顔を検出します。
  • InceptionResnetV1: 顔の埋め込みを抽出します。

初期化

<code class="language-python">import torch
from facenet_pytorch import MTCNN, InceptionResnetV1
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt

# Initialize face detection (MTCNN) and embedding extraction (InceptionResnetV1) modules.
mtcnn = MTCNN(image_size=160, keep_all=True)
resnet = InceptionResnetV1(pretrained='vggface2').eval()</code>
ログイン後にコピー

関数の定義

1.画像の読み込みと埋め込み抽出:

この関数は、URL から画像を取得し、顔を検出し、埋め込みを計算します。

<code class="language-python">def get_embedding_and_face(image_path):
    """Loads an image, detects faces, and returns the embedding and detected face."""
    try:
        response = requests.get(image_path)
        response.raise_for_status()
        content_type = response.headers.get('Content-Type')
        if 'image' not in content_type:
            raise ValueError(f"Invalid image URL: {content_type}")
        image = Image.open(BytesIO(response.content)).convert("RGB")
    except Exception as e:
        print(f"Image loading error from {image_path}: {e}")
        return None, None

    faces, probs = mtcnn(image, return_prob=True)
    if faces is None or len(faces) == 0:
        return None, None

    embedding = resnet(faces[0].unsqueeze(0))
    return embedding, faces[0]</code>
ログイン後にコピー

2.テンソルから画像への変換:

表示用にテンソルを準備します。

<code class="language-python">def tensor_to_image(tensor):
    """Converts a normalized tensor to a displayable image array."""
    image = tensor.permute(1, 2, 0).detach().numpy()
    image = (image - image.min()) / (image.max() - image.min())
    image = (image * 255).astype('uint8')
    return image</code>
ログイン後にコピー

3.最も似ている顔の識別:

ターゲット画像の埋め込みを候補の埋め込みと比較します。

<code class="language-python">def find_most_similar(target_image_path, candidate_image_paths):
    """Identifies the most similar image to the target from a list of candidates."""
    target_emb, target_face = get_embedding_and_face(target_image_path)
    if target_emb is None:
        raise ValueError("No face detected in the target image.")

    highest_similarity = float('-inf')
    most_similar_face = None
    most_similar_image_path = None

    candidate_faces = []
    similarities = []

    for candidate_image_path in candidate_image_paths:
        candidate_emb, candidate_face = get_embedding_and_face(candidate_image_path)
        if candidate_emb is None:
            similarities.append(None)
            candidate_faces.append(None)
            continue

        similarity = torch.nn.functional.cosine_similarity(target_emb, candidate_emb).item()
        similarities.append(similarity)
        candidate_faces.append(candidate_face)

        if similarity > highest_similarity:
            highest_similarity = similarity
            most_similar_face = candidate_face
            most_similar_image_path = candidate_image_path

    # Visualization
    plt.figure(figsize=(12, 8))

    # Display target image
    plt.subplot(2, len(candidate_image_paths) + 1, 1)
    plt.imshow(tensor_to_image(target_face))
    plt.title("Target Image")
    plt.axis("off")

    # Display most similar image
    if most_similar_face is not None:
        plt.subplot(2, len(candidate_image_paths) + 1, 2)
        plt.imshow(tensor_to_image(most_similar_face))
        plt.title("Most Similar")
        plt.axis("off")

    # Display all candidates with similarity scores
    for idx, (candidate_face, similarity) in enumerate(zip(candidate_faces, similarities)):
        plt.subplot(2, len(candidate_image_paths) + 1, idx + len(candidate_image_paths) + 2)
        if candidate_face is not None:
            plt.imshow(tensor_to_image(candidate_face))
            plt.title(f"Score: {similarity * 100:.2f}%")
        else:
            plt.title("No Face Detected")
        plt.axis("off")

    plt.tight_layout()
    plt.show()

    if most_similar_image_path is None:
        raise ValueError("No faces detected in candidate images.")

    return most_similar_image_path, highest_similarity</code>
ログイン後にコピー

使用法

比較用の画像 URL:

<code class="language-python">image_url_target = 'https://d1mnxluw9mpf9w.cloudfront.net/media/7588/4x3/1200.jpg'
candidate_image_urls = [
    'https://beyondthesinglestory.wordpress.com/wp-content/uploads/2021/04/elon_musk_royal_society_crop1.jpg',
    'https://cdn.britannica.com/56/199056-050-CCC44482/Jeff-Bezos-2017.jpg',
    'https://cdn.britannica.com/45/188745-050-7B822E21/Richard-Branson-2003.jpg'
]

most_similar_image, similarity_score = find_most_similar(image_url_target, candidate_image_urls)
print(f"Most similar image: {most_similar_image}")
print(f"Similarity score: {similarity_score * 100:.2f}%")</code>
ログイン後にコピー

結果

Face Recognition with Python and FaceNet

結論

この例では、facenet-pytorch の顔認識機能を紹介します。 顔検出と埋め込み生成を組み合わせることで、本人確認やコンテンツ フィルタリングなど、さまざまなアプリケーション用のツールを作成できます。

以上がPython と FaceNet による顔認識の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
著者別の最新記事
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート