目次
101 冊
私たちの作品
中程度です
ホームページ バックエンド開発 Python チュートリアル 効率的なテキスト処理と分析のための高度な Python テクニック

効率的なテキスト処理と分析のための高度な Python テクニック

Jan 13, 2025 am 11:48 AM

dvanced Python Techniques for Efficient Text Processing and Analysis

多作な作家として、アマゾンで私の本を探索することをお勧めします。 継続的なサポートとアップデートのために、Medium で私をフォローしてください。貴重なご支援に感謝いたします!

テキスト処理と分析に重点を置いた Python 開発の長年の経験から、効率的なテクニックの重要性を学びました。 この記事では、NLP プロジェクトのパフォーマンスを向上させるために私が頻繁に使用する 6 つの高度な Python メソッドを紹介します。

正規表現 (モジュールに関する)

パターンマッチングやテキスト操作には正規表現が不可欠です。 Python の re モジュールは堅牢なツールキットを提供します。正規表現をマスターすると、複雑なテキスト処理が簡素化されます。

たとえば、メールアドレスを抽出する場合:

import re

text = "Contact us at info@example.com or support@example.com"
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
emails = re.findall(email_pattern, text)
print(emails)
ログイン後にコピー
ログイン後にコピー

出力: ['info@example.com', 'support@example.com']

正規表現はテキスト置換にも優れています。 ドル金額をユーロに換算:

text = "The price is .99"
new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text)
print(new_text)
ログイン後にコピー
ログイン後にコピー

出力: "The price is €9.34"

文字列モジュールユーティリティ

Python の string モジュールは、re ほど目立たないものの、変換テーブルの作成や文字列定数の処理など、テキスト処理に役立つ定数と関数を提供します。

句読点の削除:

import string

text = "Hello, World! How are you?"
translator = str.maketrans("", "", string.punctuation)
cleaned_text = text.translate(translator)
print(cleaned_text)
ログイン後にコピー

出力: "Hello World How are you"

シーケンス比較用の difflib

文字列を比較したり、類似点を特定したりすることは一般的です。 difflib は、この目的に最適な配列比較用のツールを提供します。

似た言葉の検索:

from difflib import get_close_matches

words = ["python", "programming", "code", "developer"]
similar = get_close_matches("pythonic", words, n=1, cutoff=0.6)
print(similar)
ログイン後にコピー

出力: ['python']

SequenceMatcher は、より複雑な比較を処理します:

from difflib import SequenceMatcher

def similarity(a, b):
    return SequenceMatcher(None, a, b).ratio()

print(similarity("python", "pyhton"))
ログイン後にコピー

出力: (およそ) 0.83

ファジーマッチングのレーベンシュタイン距離

レーベンシュタイン距離アルゴリズム (多くの場合 python-Levenshtein ライブラリを使用します) は、スペル チェックとファジー マッチングに不可欠です。

スペルチェック:

import Levenshtein

def spell_check(word, dictionary):
    return min(dictionary, key=lambda x: Levenshtein.distance(word, x))

dictionary = ["python", "programming", "code", "developer"]
print(spell_check("progamming", dictionary))
ログイン後にコピー

出力: "programming"

類似した文字列の検索:

def find_similar(word, words, max_distance=2):
    return [w for w in words if Levenshtein.distance(word, w) <= max_distance]

print(find_similar("code", ["code", "coder", "python"]))
ログイン後にコピー

出力: ['code', 'coder']

テキストエンコーディング修正のftfy

ftfy ライブラリはエンコードの問題に対処し、mojibake などの一般的な問題を自動的に検出して修正します。

文字化けの修正:

import ftfy

text = "The Mona Lisa doesn’t have eyebrows."
fixed_text = ftfy.fix_text(text)
print(fixed_text)
ログイン後にコピー

出力: "The Mona Lisa doesn't have eyebrows."

Unicode の正規化:

weird_text = "This is Fullwidth text"
normal_text = ftfy.fix_text(weird_text)
print(normal_text)
ログイン後にコピー

出力: "This is Fullwidth text"

spaCy と NLTK による効率的なトークン化

トークン化は NLP の基本です。 spaCyNLTK は、単純な split() を超えた高度なトークン化機能を提供します。

spaCy によるトークン化:

import re

text = "Contact us at info@example.com or support@example.com"
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
emails = re.findall(email_pattern, text)
print(emails)
ログイン後にコピー
ログイン後にコピー

出力: ['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']

NLTK の word_tokenize:

text = "The price is .99"
new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text)
print(new_text)
ログイン後にコピー
ログイン後にコピー

出力: (spaCy と同様)

実践的なアプリケーションとベストプラクティス

これらの技術は、テキスト分類、感情分析、情報検索に適用できます。 大規模なデータセットの場合は、メモリ効率 (ジェネレーター) を優先し、CPU バウンドのタスクにマルチプロセッシングを活用し、適切なデータ構造 (メンバーシップ テスト用のセット) を使用し、繰り返し使用するために正規表現をコンパイルし、CSV 処理にパンダなどのライブラリを利用します。

これらのテクニックとベスト プラクティスを実装することで、テキスト処理ワークフローの効率と有効性を大幅に向上させることができます。これらの貴重なスキルを習得するには、一貫した練習と実験が重要であることを忘れないでください。


101 冊

101 Books は、Aarav Joshi が共同設立した AI を活用した出版社で、高度な AI テクノロジーのおかげで、手頃な価格で高品質の書籍を提供しています。 Amazon で Golang クリーン コード をチェックしてください。 「Aarav Joshi」で検索すると、さらに多くのタイトルや特別割引が表示されます!

私たちの作品

インベスター セントラル、インベスター セントラル (スペイン語/ドイツ語)、スマート リビング、エポックズ & エコーズ、パズル ミステリー、ヒンドゥーヴァ、エリート開発者、JS スクール


中程度です

Tech Koala Insights、Epochs & Echoes World、Investor Central Medium、Puzzling Mysteries Medium、Science & Epochs Medium、Modern Hindutva

以上が効率的なテキスト処理と分析のための高度な Python テクニックの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングのためのPython:詳細な外観 科学コンピューティングのためのPython:詳細な外観 Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles