ホームページ バックエンド開発 Python チュートリアル AWS と OpenWeatherMap API を使用して気象データ分析パイプラインを構築する

AWS と OpenWeatherMap API を使用して気象データ分析パイプラインを構築する

Jan 17, 2025 pm 02:12 PM

このブログ投稿では、OpenWeatherMap API と AWS サービスを使用して気象データ分析パイプラインを構築する方法を説明します。 このパイプラインは気象データを取得し、S3 に保存し、AWS Glue でカタログ化し、Amazon Athena でクエリできるようにします。

プロジェクト概要

このプロジェクトは、複数の都市から気象データを取得し、AWS S3 に保存し、AWS Glue 経由でカタログ化し、Amazon Athena を使用したクエリを可能にする、スケーラブルなデータ パイプラインを作成します。

初期アーキテクチャとアーキテクチャ図

Building a Weather Data Analytics Pipeline with AWS and OpenWeatherMap API

Building a Weather Data Analytics Pipeline with AWS and OpenWeatherMap API

プロジェクトの構造と前提条件

始める前に、次のものが揃っていることを確認してください。

  1. Docker: ローカルにインストールされています。
  2. AWS アカウント: 必要な権限 (S3 バケット、Glue データベース、Glue クローラー) を持つ。
  3. OpenWeatherMap API キー: OpenWeatherMap から取得します。

セットアップガイド

  1. リポジトリのクローンを作成します:

    git clone https://github.com/Rene-Mayhrem/weather-insights.git
    cd weather-data-analytics
    ログイン後にコピー
  2. .env ファイルを作成します: AWS 認証情報と API キーを使用して、ルート ディレクトリに .env ファイルを作成します:

    <code>AWS_ACCESS_KEY_ID=<your-access-key-id>
    AWS_SECRET_ACCESS_KEY=<your-secret-access-key>
    AWS_REGION=us-east-1
    S3_BUCKET_NAME=<your-s3-bucket-name>
    OPENWEATHER_API_KEY=<your-openweather-api-key></code>
    ログイン後にコピー
  3. cities.json を作成します: 都市をリストする cities.json を作成します:

    {
      "cities": [
        "London",
        "New York",
        "Tokyo",
        "Paris",
        "Berlin"
      ]
    }
    ログイン後にコピー
  4. Docker Compose: ビルドして実行:

    docker compose run terraform init
    docker compose run python
    ログイン後にコピー

Building a Weather Data Analytics Pipeline with AWS and OpenWeatherMap API

使用法

  1. インフラストラクチャの検証: Terraform が AWS コンソールで AWS リソース (S3、Glue データベース、Glue クローラー) を作成したかどうかを確認します。

  2. データアップロードの確認: AWS コンソールを介して、Python スクリプトが気象データ (JSON ファイル) を S3 バケットにアップロードしたことを確認します。

Building a Weather Data Analytics Pipeline with AWS and OpenWeatherMap API

  1. Glue クローラーの実行: Glue クローラーは自動的に実行されます。 Glue コンソールでの実行とデータ カタログ化を確認します。

  2. Athena によるクエリ: AWS マネジメントコンソールを使用して Athena にアクセスし、カタログ化されたデータに対して SQL クエリを実行します。

Building a Weather Data Analytics Pipeline with AWS and OpenWeatherMap API

主要コンポーネント

  • Docker: Python と Terraform に一貫した環境を提供します。
  • Terraform: AWS インフラストラクチャ (S3、Glue、Athena) を管理します。
  • Python: 気象データを取得して S3 にアップロードします。
  • 接着剤: S3 データをカタログします。
  • Athena: カタログ化されたデータをクエリします。

結論

このガイドは、AWS と OpenWeatherMap を使用してスケーラブルな気象データ分析パイプラインを構築するのに役立ちます。 パイプラインは簡単に拡張して、より多くの都市やデータ ソースを含めることができます。

以上がAWS と OpenWeatherMap API を使用して気象データ分析パイプラインを構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

See all articles