ホームページ バックエンド開発 Python チュートリアル スケーラブルな Python バックエンド: uv、Docker、プリコミットを使用したコンテナ化された FastAPI アプリケーションの構築: ステップバイステップ ガイド

スケーラブルな Python バックエンド: uv、Docker、プリコミットを使用したコンテナ化された FastAPI アプリケーションの構築: ステップバイステップ ガイド

Jan 17, 2025 pm 10:17 PM

今日のコンテナ化された世界では、効率的なバックエンド アプリケーションの展開が非常に重要です。人気の Python フレームワークである FastAPI は、高速で高性能な API の作成に優れています。 依存関係管理を合理化するために、パッケージ マネージャーである uv を使用します。

紫外線

uv と Docker がインストールされていると仮定して、アプリ uv init simple-app を作成しましょう。これにより以下が生成されます:

<code>simple-app/
├── .python-version
├── README.md
├── hello.py
└── pyproject.toml</code>
ログイン後にコピー

pyproject.toml にはプロジェクトのメタデータが保持されます:

[project]
name = "simple-app"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.11"
dependencies = []
ログイン後にコピー

プロジェクトの依存関係を pyproject.toml に追加します:

dependencies = [
    "fastapi[standard]=0.114.2",
    "python-multipart=0.0.7",
    "email-validator=2.1.0",
    "pydantic>2.0",
    "SQLAlchemy>2.0",
    "alembic=1.12.1",
]

[tool.uv]
dev-dependencies = [
    "pytest=7.4.3",
    "mypy=1.8.0",
    "ruff=0.2.2",
    "pre-commit=4.0.0",
]
ログイン後にコピー

[tool.uv] セクションでは、デプロイメント中に除外される開発依存関係を定義します。 uv sync を実行して:

  1. uv.lock.
  2. を作成します。
  3. 仮想環境 (.venv) を作成します。 uv 必要に応じて Python インタープリターをダウンロードします。
  4. 依存関係をインストールします。

高速API

FastAPI アプリケーション構造を作成します:

<code>recipe-app/
├── app/
│   ├── main.py
│   ├── __init__.py
│   └── ...
├── .python-version
├── README.md
└── pyproject.toml</code>
ログイン後にコピー

app/main.py内:

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Hello(BaseModel):
    message: str

@app.get("/", response_model=Hello)
async def hello() -> Hello:
    return Hello(message="Hi, I am using FastAPI")
ログイン後にコピー

次で実行します: uv run fastapi dev app/main.py。 次のような出力が表示されます:

Scalable Python backend: Building a containerized FastAPI Application with uv, Docker, and pre-commit: a step-by-step guide

https://www.php.cn/link/c099034308f2a231c24281de338726c1 からアクセスします。

ドッカー

Dockerize をしましょう。コンテナ内で開発します。 Dockerfile:

を追加します。
FROM python:3.11-slim

ENV PYTHONUNBUFFERED=1

COPY --from=ghcr.io/astral-sh/uv:0.5.11 /uv /uvx /bin/

ENV UV_COMPILE_BYTE=1
ENV UV_LINK_MODE=copy

WORKDIR /app

ENV PATH="/app/.venv/bin:$PATH"

COPY ./pyproject.toml ./uv.lock ./.python-version /app/

RUN --mount=type=cache,target=/root/.cache/uv \
    --mount=type=bind,source=uv.lock,target=uv.lock \
    --mount=type=bind,source=pyproject.toml,target=pyproject.toml \
    uv sync --frozen --no-install-project --no-dev

COPY ./app /app/app

RUN --mount=type=cache,target=/root/.cache/uv \
    uv sync --frozen --no-dev

CMD ["fastapi", "dev", "app/main.py", "--host", "0.0.0.0"]
ログイン後にコピー

コンテナ管理を簡単にするには、docker-compose.yaml:

を使用します。
services:
  app:
    build:
      context: .
      dockerfile: Dockerfile
    working_dir: /app
    volumes:
      - ./app:/app/app
    ports:
      - "${APP_PORT:-8000}:8000"
    environment:
      - DATABASE_URL=${DATABASE_URL}
    depends_on:
      - postgres

  postgres:
    image: postgres:15
    environment:
      POSTGRES_DB: ${POSTGRES_DB}
      POSTGRES_USER: ${POSTGRES_USER}
      POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
    volumes:
      - postgres_data:/var/lib/postgresql/data

volumes:
  postgres_data: {}
ログイン後にコピー

環境変数を含む .env ファイルを作成します。 次のコマンドを使用して実行します: docker compose up --build.

[tool.uv] および開発ツール

[tool.uv]pyproject.toml セクションには、開発ツールがリストされています。

  • pytest: テスト フレームワーク (ここでは範囲外)。
  • mypy: 静的型チェッカー。手動で実行: uv run mypy app.
  • ruff: 高速リンター (複数のツールを置き換えます)。
  • pre-commit: プリコミットフックを管理します。 .pre-commit-config.yaml:
  • を作成します
repos:
  - repo: https://github.com/pre-commit/pre-commit-hooks
    rev: v4.4.0
    hooks:
      - id: check-added-large-files
      - id: check-toml
      - id: check-yaml
        args:
          - --unsafe
      - id: end-of-file-fixer
      - id: trailing-whitespace
  - repo: https://github.com/astral-sh/ruff-pre-commit
    rev: v0.8.6
    hooks:
      - id: ruff
        args: [--fix]
      - id: ruff-format
ログイン後にコピー

pyproject.tomlmypyruff 構成を追加します (例は元のテキストに示されています)。 リアルタイム lint のために VS Code Ruff 拡張機能をインストールします。 この設定により、一貫したコード スタイル、型チェック、およびコミット前チェックが保証され、効率化されたワークフローが実現します。

以上がスケーラブルな Python バックエンド: uv、Docker、プリコミットを使用したコンテナ化された FastAPI アプリケーションの構築: ステップバイステップ ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? 中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

正規表現とは何ですか? 正規表現とは何ですか? Mar 20, 2025 pm 06:25 PM

正規表現は、プログラミングにおけるパターンマッチングとテキスト操作のための強力なツールであり、さまざまなアプリケーションにわたるテキスト処理の効率を高めます。

人気のあるPythonライブラリとその用途は何ですか? 人気のあるPythonライブラリとその用途は何ですか? Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? Apr 01, 2025 pm 10:51 PM

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

文字列を介してオブジェクトを動的に作成し、Pythonでメソッドを呼び出す方法は? 文字列を介してオブジェクトを動的に作成し、Pythonでメソッドを呼び出す方法は? Apr 01, 2025 pm 11:18 PM

Pythonでは、文字列を介してオブジェクトを動的に作成し、そのメソッドを呼び出す方法は?これは一般的なプログラミング要件です。特に構成または実行する必要がある場合は...

See all articles