土壌サンプルの位置を表す 2D 点セット内の穴を特定して描写するにはどうすればよいでしょうか?
2D 点セットで穴を見つける
このタスクは、デカルト グリッド システム内の 2D 点セットで穴を見つけることです。点は土壌サンプルの場所を表し、穴には巨大な岩、湿地、湖/池が含まれる可能性があります。目標は、アルゴリズムの感度を調整してポリゴンの粗さまたは滑らかさを制御しながら、これらの領域を大まかに定義する凹状のポリゴンを見つけることです。
ソリューションアプローチ
手順:
- 密度マップの作成: スケーリングによってポイント セットをビットマップまたは 2D 配列に変換しますそして各点をグリッド上に投影します。各セルの密度 (ポイントの数) を計算します。
- 穴の特定: 密度がゼロまたは指定されたしきい値未満のセルを検索します。
- 穴の領域をセグメント化します。 : これらの穴を覆う水平線と垂直線を作成し、近接性によってグループ化して穴を形成します
- 穴セグメントをポリゴン化: セグメントを凹型ポリゴンに変換します。ポイントを並べ替えて、適切な接続を確保し、重複を削除します。
実装例 (C#):
using System; using System.Collections.Generic; public class Holes { // Density map (2D array) private int[][] map; // List of hole segments (lines) private List<Line> segments; // Polygonized holes (concave polygons) private List<Polygon> holes; // Polygonization tolerance (higher value = smoother polygons) private double tolerance; // Initializes the hole detection algorithm. public Holes(int[][] points, int mapSize, double tolerance) { if (points == null || mapSize <= 0 || tolerance <= 0) { throw new ArgumentException("Invalid arguments"); } // Initialize the variables this.map = new int[mapSize][mapSize]; this.tolerance = tolerance; this.segments = new List<Line>(); this.holes = new List<Polygon>(); // Create density map CreateDensityMap(points, mapSize); } // Identifies holes in the density map. public void FindHoles() { if (map == null || map.Length == 0) { throw new InvalidOperationException("Density map not initialized."); } // Find hole cells List<Cell> holeCells = FindCells(0); // Group hole cells into segments List<List<Line>> lineGroups = GroupLines(holeCells); // Polygonize segments PolygonizeSegments(lineGroups); } // Helper functions for hole detection. private void CreateDensityMap(int[][] points, int mapSize) { // Scale and project points onto a grid for (int i = 0; i < points.Length; i++) { double scaledX = points[i][0] / points[0][0] * mapSize; double scaledY = points[i][1] / points[0][1] * mapSize; int x = (int)scaledX; int y = (int)scaledY; // Increment count in density map map[x][y]++; } } private List<Cell> FindCells(int threshold) { List<Cell> holeCells = new List<Cell>(); for (int i = 0; i < map.Length; i++) { for (int j = 0; j < map[i].Length; j++) { if (map[i][j] == 0 || map[i][j] <= threshold) { holeCells.Add(new Cell(i, j)); } } } return holeCells; } private List<List<Line>> GroupLines(List<Cell> holeCells) { // Group lines by proximity List<List<Line>> lineGroups = new List<List<Line>>(); foreach (Cell holeCell in holeCells) { List<Line> group = null; // Find existing group or create a new one for (int i = 0; i < lineGroups.Count; i++) { if (lineGroups[i].Find(line => line.Proximity(holeCell) <= tolerance) != null) { group = lineGroups[i]; break; } } if (group == null) { group = new List<Line>(); lineGroups.Add(group); } // Add horizontal/vertical lines group.Add(new Line(holeCell.x, holeCell.y, true)); group.Add(new Line(holeCell.x, holeCell.y, false)); } return lineGroups; } private void PolygonizeSegments(List<List<Line>> lineGroups) { foreach (List<Line> lineGroup in lineGroups) { Polygon polygon = PolygonizeSegment(lineGroup); if (polygon != null) { holes.Add(polygon); } } } private Polygon PolygonizeSegment(List<Line> lineSegment) { // Sort lines by angle (convex hull algorithm) lineSegment.Sort((a, b) => a.Angle.CompareTo(b.Angle)); // Remove duplicate lines List<Line> uniqueLines = new List<Line>(); foreach (Line line in lineSegment) { if (uniqueLines.Count == 0 || uniqueLines[uniqueLines.Count - 1].Angle != line.Angle) { uniqueLines.Add(line); } } // Polygonize lines List<Point> points = new List<Point>(); for (int i = 0; i < uniqueLines.Count; i++) { Point point = null; Line currentLine = uniqueLines[i]; if (uniqueLines[(i + 1) % uniqueLines.Count].Angle - currentLine.Angle > Math.PI) { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], true); } else { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], false); } if (point != null) { points.Add(point); } } return new Polygon(points); } // Helper classes for line/polygon representation. private class Line { public int x1, y1, x2, y2; public double angle; public bool isHorizontal; public Line(int x, int y, bool isHorizontal) { if (isHorizontal) { x1 = 0; y1 = y; x2 = map.GetLength(0) - 1; y2 = y; } else { x1 = x; y1 = 0; x2 = x; y2 = map[0].GetLength(0) - 1; } this.angle = Math.Atan2(y2 - y1, x2 - x1); this.isHorizontal = isHorizontal; } public double Angle { get { return angle; } } public double Proximity(Cell cell) { double distX, distY; if (isHorizontal) { distX = cell.x - x1; distY = cell.y - y1; } else { distX = cell.x - x2; distY = cell.y - y2; } return Math.Sqrt(distX * distX + distY * distY); } public Point GetIntersection(Line other, bool isConvex) { double denominator, numerator, tx, ty; if (isHorizontal) { denominator = (other.y2 - other.y1) - (y2 - y1); numerator = ((other.x2 - other.x1) * (y1 - other.y1)) - ((x2 - x1) * (other.y2 - other.y1)); tx = numerator / denominator; ty = other.y1 + ((tx - other.x1) * (other.y2 - other.y1)) / (other.x2 - other.x1); } else { denominator = (other.x2 - other.x1) - (x2 - x1);
以上が土壌サンプルの位置を表す 2D 点セット内の穴を特定して描写するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

CとXMLの将来の開発動向は次のとおりです。1)Cは、プログラミングの効率とセキュリティを改善するためのC 20およびC 23の標準を通じて、モジュール、概念、CORoutinesなどの新しい機能を導入します。 2)XMLは、データ交換および構成ファイルの重要なポジションを引き続き占有しますが、JSONとYAMLの課題に直面し、XMLSchema1.1やXpath3.1の改善など、より簡潔で簡単な方向に発展します。

C継続的な使用の理由には、その高性能、幅広いアプリケーション、および進化する特性が含まれます。 1)高効率パフォーマンス:Cは、メモリとハードウェアを直接操作することにより、システムプログラミングと高性能コンピューティングで優れたパフォーマンスを発揮します。 2)広く使用されている:ゲーム開発、組み込みシステムなどの分野での輝き。3)連続進化:1983年のリリース以来、Cは競争力を維持するために新しい機能を追加し続けています。

cマルチスレッドと同時プログラミングのコア概念には、スレッドの作成と管理、同期と相互排除、条件付き変数、スレッドプーリング、非同期プログラミング、一般的なエラーとデバッグ技術、パフォーマンスの最適化とベストプラクティスが含まれます。 1)STD ::スレッドクラスを使用してスレッドを作成します。この例は、スレッドが完了する方法を作成し、待つ方法を示しています。 2)共有リソースを保護し、データ競争を回避するために、STD :: MutexおよびSTD :: LOCK_GUARDを使用するための同期と相互除外。 3)条件変数は、std :: condition_variableを介したスレッド間の通信と同期を実現します。 4)スレッドプールの例は、スレッドプールクラスを使用してタスクを並行して処理して効率を向上させる方法を示しています。 5)非同期プログラミングはSTD :: ASを使用します

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

C学習者と開発者は、Stackoverflow、RedditのR/CPPコミュニティ、CourseraおよびEDXコース、Github、Professional Consulting Services、およびCPPCONのオープンソースプロジェクトからリソースとサポートを得ることができます。 1. StackOverFlowは、技術的な質問への回答を提供します。 2。RedditのR/CPPコミュニティが最新ニュースを共有しています。 3。CourseraとEDXは、正式なCコースを提供します。 4. LLVMなどのGitHubでのオープンソースプロジェクトやスキルの向上。 5。JetBrainやPerforceなどの専門的なコンサルティングサービスは、技術サポートを提供します。 6。CPPCONとその他の会議はキャリアを助けます

最新のCデザインモデルは、C 11以降の新機能を使用して、より柔軟で効率的なソフトウェアを構築するのに役立ちます。 1)ラムダ式とstd :: functionを使用して、オブザーバーパターンを簡素化します。 2)モバイルセマンティクスと完全な転送を通じてパフォーマンスを最適化します。 3)インテリジェントなポインターは、タイプの安全性とリソース管理を保証します。

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。
