C でのオブジェクト指向プログラミング?インターフェースを最初から実装する
コンピューティングの複雑さを探求するには、多くの場合、何かが どのように機能するだけでなく、なぜ、どのようにしてゼロから構築できるのかを理解する必要があります。この記事では、Java を参照ポイントとして使用して、オブジェクト指向プログラミング (OOP) のインターフェイスの概念を詳しく説明し、基本的な C 実装を示します。
簡単な車両価格の例
私たちの例は、車両価格の計算に焦点を当てています。つまり、車は速度によって価格が設定され、オートバイはエンジン排気量 (cc) によって価格が設定されます。 まず、車両のコア動作を定義する Java インターフェイスから始めます。
public interface Vehicle { Integer price(); }
このインターフェースは、Car
クラスと Motorcycle
クラスによって実装されます。
public class Car implements Vehicle { private final Integer speed; public Car(Integer speed) { this.speed = speed; } @Override public Integer price() { return speed * 60; } } public class Motorcycle implements Vehicle { private final Integer cc; public Motorcycle(Integer cc) { this.cc = cc; } @Override public Integer price() { return cc * 10; } }
ヘルパー関数は価格を出力します:
public static void printVehiclePrice(Vehicle vehicle) { System.out.println("$" + vehicle.price() + ".00"); }
メインメソッドは使用法を示します:
public static void main(String[] args) { Car car = new Car(120); Motorcycle motorcycle = new Motorcycle(1000); printVehiclePrice(car); // Output: 00.00 printVehiclePrice(motorcycle); // Output: 000.00 }
これを C で複製するには、別のアプローチが必要です。
C でのインターフェイスの実装: 手動アプローチ
C には、Java の組み込みインターフェイス メカニズムがありません。 データには構造体、メソッドには関数を使用してシミュレーションします。 コンパイラはインターフェイスの解決を処理しません。手動で行う必要があります。
私たちの「インターフェース」スケルトン:
#include <stdio.h> #include <stdlib.h> typedef enum { VEHICLE_CAR, VEHICLE_MOTORCYCLE } VehicleType; typedef struct { VehicleType type; } Vehicle; void vehicle_free(Vehicle *vehicle); int vehicle_price(Vehicle *vehicle);
Car
実装:
typedef struct { VehicleType type; int speed; } Car; Car *car_init(int speed) { Car *car = malloc(sizeof(Car)); car->type = VEHICLE_CAR; car->speed = speed; return car; } void car_free(Car *car) { free(car); } int car_price(Car *car) { return car->speed * 60; }
Motorcycle
実装 (Car
と同様):
typedef struct { VehicleType type; int cc; } Motorcycle; Motorcycle *motorcycle_init(int cc) { Motorcycle *motorcycle = malloc(sizeof(Motorcycle)); motorcycle->type = VEHICLE_MOTORCYCLE; motorcycle->cc = cc; return motorcycle; } void motorcycle_free(Motorcycle *motorcycle) { free(motorcycle); } int motorcycle_price(Motorcycle *motorcycle) { return motorcycle->cc * 10; }
価格印刷機能:
void print_vehicle_price(Vehicle *vehicle) { printf("$%d.00\n", vehicle_price(vehicle)); }
重要なのは、vehicle_free
ステートメントを使用して vehicle_price
と switch
を実装し、さまざまな車両タイプを処理することです。
void vehicle_free(Vehicle *vehicle) { switch (vehicle->type) { case VEHICLE_CAR: car_free((Car *)vehicle); break; case VEHICLE_MOTORCYCLE: motorcycle_free((Motorcycle *)vehicle); break; } } int vehicle_price(Vehicle *vehicle) { switch (vehicle->type) { case VEHICLE_CAR: return car_price((Car *)vehicle); case VEHICLE_MOTORCYCLE: return motorcycle_price((Motorcycle *)vehicle); } }
メイン関数は使用法を示します:
int main(void) { Car *car = car_init(120); Motorcycle *motorcycle = motorcycle_init(1000); print_vehicle_price((Vehicle *)car); // Output: 00.00 print_vehicle_price((Vehicle *)motorcycle); // Output: 000.00 vehicle_free((Vehicle *)car); vehicle_free((Vehicle *)motorcycle); return 0; }
実用的なアプリケーション: 抽象構文ツリー (AST)
この手動インターフェイスのアプローチは、抽象構文ツリー (AST) が同様の構造から恩恵を受ける可能性がある解析などのシナリオで特に役立ちます。 AST 内のさまざまなノード タイプは、一連の関数によって定義された共通の「インターフェイス」にすべて準拠する個別の構造体として表すことができます。
結論
C には組み込みインターフェイスがありませんが、慎重な構造と関数の設計でインターフェイスをシミュレートすると、同様の OOP 原理を実現するための強力なメカニズムが提供されます。 この手動アプローチは柔軟性と制御を提供し、パーサーやインタープリターのような複雑なプロジェクトで特に有益です。
以上がC でのオブジェクト指向プログラミング?インターフェースを最初から実装するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

Cでの静的分析の適用には、主にメモリ管理の問題の発見、コードロジックエラーの確認、およびコードセキュリティの改善が含まれます。 1)静的分析では、メモリリーク、ダブルリリース、非初期化ポインターなどの問題を特定できます。 2)未使用の変数、死んだコード、論理的矛盾を検出できます。 3)カバー性などの静的分析ツールは、バッファーオーバーフロー、整数のオーバーフロー、安全でないAPI呼び出しを検出して、コードセキュリティを改善します。

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

Cは、現代のプログラミングにおいて依然として重要な関連性を持っています。 1)高性能および直接的なハードウェア操作機能により、ゲーム開発、組み込みシステム、高性能コンピューティングの分野で最初の選択肢になります。 2)豊富なプログラミングパラダイムとスマートポインターやテンプレートプログラミングなどの最新の機能は、その柔軟性と効率を向上させます。学習曲線は急ですが、その強力な機能により、今日のプログラミングエコシステムでは依然として重要です。

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。

c isnotdying; it'sevolving.1)c relelevantdueToitsversitileSileSixivisityinperformance-criticalApplications.2)thelanguageSlikeModulesandCoroutoUtoimveUsablive.3)despiteChallen
