SQL で異なるテーブルの複数の列を効率的にクエリする方法は?
複数テーブル、複数列の SQL クエリの最適化
複数のテーブルからデータを取得する場合、特にさまざまな列から値を集計する必要がある場合に問題が発生することがよくあります。最近のサポート ケースでは、ユーザーが 2 つのテーブルの複数の列にわたる値を正確にカウントすることが難しいことが浮き彫りになりました。ネストされたサブクエリを使用した最初の試みでは、誤った結果が得られました。
欠陥のあるクエリは次のようになります:
SELECT * from ( SELECT COUNT(DAY_IN) AS arr FROM t_hospital WHERE DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )e, (SELECT COUNT(PAT_STATUS) AS ONG1 FROM t_hospital WHERE PAT_STATUS like '%ong%' and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN ) a, (SELECT COUNT(PAT_STATUS) AS RTED FROM t_hospital WHERE PAT_STATUS like '%rtde%'and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )b, (SELECT COUNT(PAT_STATUS) AS POLI FROM t_hospital WHERE PAT_STATUS like '%pol%'and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )c, (SELECT COUNT(PAT_STATUS) AS para FROM t_hospital WHERE PAT_STATUS like '%para%' and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )d
解決策は、単一のクエリ内で条件付き集計を使用することです。この合理化されたアプローチは、指定された条件に基づいて複数の列を計算し、正確な結果を提供します。 改良されたクエリは次のとおりです:
SELECT DAY_IN, COUNT(*) AS arr, SUM(IF(PAT_STATUS like '%ong%', 1, 0)) AS ONG1, SUM(IF(PAT_STATUS like '%rtde%', 1, 0)) AS RTED, SUM(IF(PAT_STATUS like '%pol%', 1, 0)) AS POL1, SUM(IF(PAT_STATUS like '%para%', 1, 0)) AS para FROM t_hospital WHERE DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos GROUP BY DAY_IN
この改訂されたクエリは、必要なデータを効率的に取得し、元の過度に複雑な構造に関連するエラーを排除します。 重要なのは、条件付き SUM()
ステートメントを使用して、計算を単一の適切に構造化されたクエリに統合することです。
以上がSQL で異なるテーブルの複数の列を効率的にクエリする方法は?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。
