共分散と反分散は C# でのインターフェイスの使用をどのように強化しますか?
C# の共変インターフェイスと反変インターフェイスについての深い理解
共変性と反変性は、さまざまな型で参照がどのように使用されるかを定義するオブジェクト指向プログラミングの概念です。 C# では、<out T>
および <in T>
構文を使用して、インターフェイスをそれぞれ共変または反変としてマークできます。
共分散
C# では、共分散により、インターフェイス参照を階層内の上位の型への参照として扱うことができます。たとえば、IBibble<out T>
クラスが IBibble<Descendant>
型を継承している限り、インターフェイス Descendant
に T
のインスタンス参照を割り当てることができます。これは、IBibble<T>
で実行できるものはすべて IBibble<Descendant>
でも実行できることを意味します。
インバータ
C# では、反変性により、インターフェイス参照を階層の下位の型への参照として扱うことができます。たとえば、IBibble<in T>
型が IBibble<Base>
型から継承している限り、インターフェイス Base
に T
のインスタンス参照を割り当てることができます。これは、IBibble<Base>
に割り当てられるオブジェクトはすべて IBibble<Descendant>
にも割り当てられることを意味します。
用途と応用
共分散は、共通の基本型を共有するオブジェクトのコレクションを操作する場合に便利です。共変インターフェイスを使用することで、基本型で実行される操作がすべての派生型にも適用されるようになります。
反変性は、さまざまな型のパラメーターを受け入れるファクトリまたはデリゲートを扱うときに便利です。反変インターフェイスを使用することで、基本型に割り当てられるオブジェクトはすべてファクトリまたはデリゲートのパラメーターとしても使用できるようになります。
例
次のコード スニペットを考えてみましょう:
namespace SO2719954 { class Base { } class Descendant : Base { } interface IBibbleOut<out T> { } interface IBibbleIn<in T> { } class Program { static void Main(string[] args) { // 协变示例 IBibbleOut<Base> b = GetOutDescendant(); // IBibbleOut<Descendant> 赋值 // 逆变示例 IBibbleIn<Descendant> d = GetInBase(); // IBibbleIn<Base> 赋值 } static IBibbleOut<Descendant> GetOutDescendant() { return null; } static IBibbleIn<Base> GetInBase() { return null; } } }
この例では、インターフェース IBibbleOut<out T>
は共変であるため、b
は Descendant
オブジェクトを参照できます。インターフェース IBibbleIn<in T>
は反変であり、d
は Base
オブジェクトを参照できます。
以上が共分散と反分散は C# でのインターフェイスの使用をどのように強化しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。

C学習者と開発者は、Stackoverflow、RedditのR/CPPコミュニティ、CourseraおよびEDXコース、Github、Professional Consulting Services、およびCPPCONのオープンソースプロジェクトからリソースとサポートを得ることができます。 1. StackOverFlowは、技術的な質問への回答を提供します。 2。RedditのR/CPPコミュニティが最新ニュースを共有しています。 3。CourseraとEDXは、正式なCコースを提供します。 4. LLVMなどのGitHubでのオープンソースプロジェクトやスキルの向上。 5。JetBrainやPerforceなどの専門的なコンサルティングサービスは、技術サポートを提供します。 6。CPPCONとその他の会議はキャリアを助けます

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

Cでの静的分析の適用には、主にメモリ管理の問題の発見、コードロジックエラーの確認、およびコードセキュリティの改善が含まれます。 1)静的分析では、メモリリーク、ダブルリリース、非初期化ポインターなどの問題を特定できます。 2)未使用の変数、死んだコード、論理的矛盾を検出できます。 3)カバー性などの静的分析ツールは、バッファーオーバーフロー、整数のオーバーフロー、安全でないAPI呼び出しを検出して、コードセキュリティを改善します。

Cは、現代のプログラミングにおいて依然として重要な関連性を持っています。 1)高性能および直接的なハードウェア操作機能により、ゲーム開発、組み込みシステム、高性能コンピューティングの分野で最初の選択肢になります。 2)豊富なプログラミングパラダイムとスマートポインターやテンプレートプログラミングなどの最新の機能は、その柔軟性と効率を向上させます。学習曲線は急ですが、その強力な機能により、今日のプログラミングエコシステムでは依然として重要です。

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。
