ブラウザで大規模な言語モデル(LLM)を直接実行すると、プライバシーを保護するクライアントAIアプリケーションに新しい可能性がもたらされます。このブログ投稿では、BrowserのWebGPUとHugging FaceのTransformers.jsライブラリを使用する方法を調べて、強力なテキストから画像生成モデル
deepseek janus-pro-1bを完全に実行します。
なぜブラウザベースの推論を選択するのですか?
WebGPUが加速されます(Chrome 113またはEdge 113が必須)。
<code class="language-javascript">import { AutoProcessor, MultiModalityCausalLM, BaseStreamer, TextStreamer, InterruptableStoppingCriteria, } from "@huggingface/transformers"; // 定义常量 const IMAGE_GENERATION_COMMAND_PREFIX = "/imagine "; const MAX_NEW_TEXT_TOKENS = 1024; /** * 用于执行 WebGPU 功能检测的辅助函数 */ let fp16_supported = false; async function check() { try { const adapter = await navigator.gpu.requestAdapter(); if (!adapter) { throw new Error("WebGPU 不受支持(未找到适配器)"); } fp16_supported = adapter.features.has("shader-f16"); self.postMessage({ status: "success", data: fp16_supported, }); } catch (e) { self.postMessage({ status: "error", data: e.toString(), }); } } /** * 此类使用单例模式来启用管道延迟加载 */ class ImageGenerationPipeline { static model_id = "onnx-community/Janus-Pro-1B-ONNX"; static async getInstance(progress_callback = null) { this.processor ??= AutoProcessor.from_pretrained(this.model_id, { progress_callback, }); this.model ??= MultiModalityCausalLM.from_pretrained(this.model_id, { dtype: fp16_supported ? { prepare_inputs_embeds: "q4", language_model: "q4f16", lm_head: "fp16", gen_head: "fp16", gen_img_embeds: "fp16", image_decode: "fp32", } : { prepare_inputs_embeds: "fp32", language_model: "q4", lm_head: "fp32", lm_head: "fp32", gen_head: "fp32", gen_img_embeds: "fp32", image_decode: "fp32", }, device: { prepare_inputs_embeds: "wasm", // TODO 当错误修复后使用“webgpu” language_model: "webgpu", lm_head: "webgpu", gen_head: "webgpu", gen_img_embeds: "webgpu", image_decode: "webgpu", }, progress_callback, }); return Promise.all([this.processor, this.model]); } } class ProgressStreamer extends BaseStreamer { constructor(total, on_progress) { super(); this.total = total; this.on_progress = on_progress; this.count = null; this.start_time = null; } put(value) { if (this.count === null) { // 忽略第一批标记(提示) this.count = 0; this.start_time = performance.now(); return; } const progress = ++this.count / this.total; this.on_progress({ count: this.count, total: this.total, progress, time: performance.now() - this.start_time, }); } end() { /* 什么也不做 */ } } const stopping_criteria = new InterruptableStoppingCriteria(); async function generate(messages) { // 对于此演示,我们只响应最后一条消息 const message = messages.at(-1); // 告诉主线程我们已开始 self.postMessage({ status: "start" }); // 加载管道 const [processor, model] = await ImageGenerationPipeline.getInstance(); // 确定用户是否要生成图像或文本 if (message.content.startsWith(IMAGE_GENERATION_COMMAND_PREFIX)) { const text = message.content.replace(IMAGE_GENERATION_COMMAND_PREFIX, ""); const conversation = [ { role: "", // 使用标题大小写 content: text, }, ]; const inputs = await processor(conversation, { chat_template: "text_to_image", }); const callback_function = (output) => { self.postMessage({ status: "image-update", ...output, }); }; const num_image_tokens = processor.num_image_tokens; const streamer = new ProgressStreamer(num_image_tokens, callback_function); const outputs = await model.generate_images({ ...inputs, min_new_tokens: num_image_tokens, max_new_tokens: num_image_tokens, do_sample: true, streamer, }); const blob = await outputs[0].toBlob(); // 将输出发送回主线程 self.postMessage({ status: "image-update", blob, }); } else { const inputs = await processor( message.image ? [ { role: "", content: "<image_placeholder>\n" + message.content, images: [message.image], }, ] : [ { role: "", content: "您是一位乐于助人的助手。以简洁的方式回答用户的问题。", }, { role: "", content: message.content, }, ], ); let startTime; let numTokens = 0; let tps; const token_callback_function = () => { startTime ??= performance.now(); if (numTokens++ > 0) { tps = (numTokens / (performance.now() - startTime)) * 1000; } }; const callback_function = (output) => { self.postMessage({ status: "text-update", output, tps, numTokens, }); }; const streamer = new TextStreamer(processor.tokenizer, { skip_prompt: true, skip_special_tokens: true, callback_function, token_callback_function, }); // 生成响应 const outputs = await model.generate({ ...inputs, max_new_tokens: MAX_NEW_TEXT_TOKENS, do_sample: false, streamer, stopping_criteria, }); } // 告诉主线程我们已完成 self.postMessage({ status: "complete", }); } async function load() { self.postMessage({ status: "loading", data: "正在加载模型...", }); // 加载管道并将其保存以备将来使用。 const [processor, model] = await ImageGenerationPipeline.getInstance((x) => { // 我们还向管道添加进度回调,以便我们可以 // 跟踪模型加载。 self.postMessage(x); }); self.postMessage({ status: "ready" }); } // 侦听来自主线程的消息 self.addEventListener("message", async (e) => { const { type, data } = e.data; switch (type) { case "check": check(); break; case "load": load(); break; case "generate": stopping_criteria.reset(); generate(data); break; case "interrupt": stopping_criteria.interrupt(); break; case "reset": stopping_criteria.reset(); break; } });</code>
モデルの定量化
:モデルの定量化は8桁になり、サイズを縮小し、負荷速度を向上させます。 メモリ管理
:: Webワーカーは、推論中にUIが凍結するのを防ぐことができます。開発者にとって、これは降下とユーザー中心のAIアプリケーションのエキサイティングな変化を示しています。サンプルコードに関する詳細な調査と構築を開始してください! ?
この復活した出力は、diffferengと文の構造を使用している間、元の意味を維持しますが、それは非常に長いコードスニペットであり、実際のアプリケーションでより小さな、管理可能なチャンクになることから利益を得るかもしれません以上がDeepSeek Janus-Pro-Inブラウザの実行:ステップバイステップガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。