オブジェクト検出にYolo V12を使用する方法は?
YOLO (You Only Look Once) has been a leading real-time object detection framework, with each iteration improving upon the previous versions. The latest version YOLO v12 introduces advancements that significantly enhance accuracy while maintaining real-time processing speeds. This article explores the key innovations in YOLO v12, highlighting how it surpasses the previous versions while minimizing computational costs without compromising detection efficiency.
Table of contents
- What’s New in YOLO v12?
- Key Improvements Over Previous Versions
- Computational Efficiency Enhancements
- YOLO v12 Model Variants
- Let’s compare YOLO v11 and YOLO v12 Models
- Expert Opinions on YOLOv11 and YOLOv12
- Conclusion
What’s New in YOLO v12?
Previously, YOLO models relied on Convolutional Neural Networks (CNNs) for object detection due to their speed and efficiency. However, YOLO v12 makes use of attention mechanisms, a concept widely known and used in Transformer models which allow it to recognize patterns more effectively. While attention mechanisms have originally been slow for real-time object detection, YOLO v12 somehow successfully integrates them while maintaining YOLO’s speed, leading to an Attention-Centric YOLO framework.
Key Improvements Over Previous Versions
1. Attention-Centric Framework
YOLO v12 combines the power of attention mechanisms with CNNs, resulting in a model that is both faster and more accurate. Unlike its predecessors which relied solely on CNNs, YOLO v12 introduces optimized attention modules to improve object recognition without adding unnecessary latency.
2. Superior Performance Metrics
Comparing performance metrics across different YOLO versions and real-time detection models reveals that YOLO v12 achieves higher accuracy while maintaining low latency.
- The mAP (Mean Average Precision) values on datasets like COCO show YOLO v12 outperforming YOLO v11 and YOLO v10 while maintaining comparable speed.
- The model achieves a remarkable 40.6% accuracy (mAP) while processing images in just 1.64 milliseconds on an Nvidia T4 GPU. This performance is superior to YOLO v10 and YOLO v11 without sacrificing speed.
3. Outperforming Non-YOLO Models
YOLO v12 surpasses previous YOLO versions; it also outperforms other real-time object detection frameworks, such as RT-Det and RT-Det v2. These alternative models have higher latency yet fail to match YOLO v12’s accuracy.
Computational Efficiency Enhancements
One of the major concerns with integrating attention mechanisms into YOLO models was their high computational cost (Attention Mechanism) and memory inefficiency. YOLO v12 addresses these issues through several key innovations:
1. Flash Attention for Memory Efficiency
Traditional attention mechanisms consume a large amount of memory, making them impractical for real-time applications. YOLO v12 introduces Flash Attention, a technique that reduces memory consumption and speeds up inference time.
2. Area Attention for Lower Computation Cost
To further optimize efficiency, YOLO v12 employs Area Attention, which focuses only on relevant regions of an image instead of processing the entire feature map. This technique dramatically reduces computation costs while retaining accuracy.
3. R-ELAN for Optimized Feature Processing
YOLO v12 also introduces R-ELAN (Re-Engineered ELAN), which optimizes feature propagation making the model more efficient in handling complex object detection tasks without increasing computational demands.
YOLO v12 Model Variants
YOLO v12 comes in five different variants, catering to different applications:
- N (Nano) & S (Small): Designed for real-time applications where speed is crucial.
- M (Medium): Balances accuracy and speed, suitable for general-purpose tasks.
- L (Large) & XL (Extra Large): Optimized for high-precision tasks where accuracy is prioritized over speed.
Also read:
- A Step-by-Step Introduction to the Basic Object Detection Algorithms (Part 1)
- A Practical Implementation of the Faster R-CNN Algorithm for Object Detection (Part 2)
- A Practical Guide to Object Detection using the Popular YOLO Framework – Part III (with Python codes)
Let’s compare YOLO v11 and YOLO v12 Models
We’ll be experimenting with YOLO v11 and YOLO v12 small models to understand their performance across various tasks like object counting, heatmaps, and speed estimation.
1. Object Counting
YOLO v11
import cv2 from ultralytics import solutions cap = cv2.VideoCapture("highway.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FPS))) # Define region points region_points = [(20, 1500), (1080, 1500), (1080, 1460), (20, 1460)] # Lower rectangle region counting # Video writer (MP4 format) video_writer = cv2.VideoWriter("object_counting_output.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # Init ObjectCounter counter = solutions.ObjectCounter( show=False, # Disable internal window display region=region_points, model="yolo11s.pt", ) # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break im0 = counter.count(im0) # Resize to fit screen (optional — scale down for large videos) im0_resized = cv2.resize(im0, (640, 360)) # Adjust resolution as needed # Show the resized frame cv2.imshow("Object Counting", im0_resized) video_writer.write(im0) # Press 'q' to exit if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() video_writer.release() cv2.destroyAllWindows()
Output
YOLO v12
import cv2 from ultralytics import solutions cap = cv2.VideoCapture("highway.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FPS))) # Define region points region_points = [(20, 1500), (1080, 1500), (1080, 1460), (20, 1460)] # Lower rectangle region counting # Video writer (MP4 format) video_writer = cv2.VideoWriter("object_counting_output.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # Init ObjectCounter counter = solutions.ObjectCounter( show=False, # Disable internal window display region=region_points, model="yolo12s.pt", ) # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break im0 = counter.count(im0) # Resize to fit screen (optional — scale down for large videos) im0_resized = cv2.resize(im0, (640, 360)) # Adjust resolution as needed # Show the resized frame cv2.imshow("Object Counting", im0_resized) video_writer.write(im0) # Press 'q' to exit if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() video_writer.release() cv2.destroyAllWindows()
Output
2. Heatmaps
YOLO v11
import cv2 from ultralytics import solutions cap = cv2.VideoCapture("mall_arial.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) # Video writer video_writer = cv2.VideoWriter("heatmap_output_yolov11.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # In case you want to apply object counting + heatmaps, you can pass region points. # region_points = [(20, 400), (1080, 400)] # Define line points # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # Define region points # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)] # Define polygon points # Init heatmap heatmap = solutions.Heatmap( show=True, # Display the output model="yolo11s.pt", # Path to the YOLO11 model file colormap=cv2.COLORMAP_PARULA, # Colormap of heatmap # region=region_points, # If you want to do object counting with heatmaps, you can pass region_points # classes=[0, 2], # If you want to generate heatmap for specific classes i.e person and car. # show_in=True, # Display in counts # show_out=True, # Display out counts # line_width=2, # Adjust the line width for bounding boxes and text display ) # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break im0 = heatmap.generate_heatmap(im0) im0_resized = cv2.resize(im0, (w, h)) video_writer.write(im0_resized) cap.release() video_writer.release() cv2.destroyAllWindows()
Output
YOLO v12
import cv2 from ultralytics import solutions cap = cv2.VideoCapture("mall_arial.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) # Video writer video_writer = cv2.VideoWriter("heatmap_output_yolov12.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # In case you want to apply object counting + heatmaps, you can pass region points. # region_points = [(20, 400), (1080, 400)] # Define line points # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # Define region points # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)] # Define polygon points # Init heatmap heatmap = solutions.Heatmap( show=True, # Display the output model="yolo12s.pt", # Path to the YOLO11 model file colormap=cv2.COLORMAP_PARULA, # Colormap of heatmap # region=region_points, # If you want to do object counting with heatmaps, you can pass region_points # classes=[0, 2], # If you want to generate heatmap for specific classes i.e person and car. # show_in=True, # Display in counts # show_out=True, # Display out counts # line_width=2, # Adjust the line width for bounding boxes and text display ) # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break im0 = heatmap.generate_heatmap(im0) im0_resized = cv2.resize(im0, (w, h)) video_writer.write(im0_resized) cap.release() video_writer.release() cv2.destroyAllWindows()
Output
3. Speed Estimation
YOLO v11
import cv2 from ultralytics import solutions import numpy as np cap = cv2.VideoCapture("cars_on_road.mp4") assert cap.isOpened(), "Error reading video file" # Capture video properties w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) # Video writer video_writer = cv2.VideoWriter("speed_management_yolov11.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # Define speed region points (adjust for your video resolution) speed_region = [(300, h - 200), (w - 100, h - 200), (w - 100, h - 270), (300, h - 270)] # Initialize SpeedEstimator speed = solutions.SpeedEstimator( show=False, # Disable internal window display model="yolo11s.pt", # Path to the YOLO model file region=speed_region, # Pass region points # classes=[0, 2], # Optional: Filter specific object classes (e.g., cars, trucks) # line_width=2, # Optional: Adjust the line width ) # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break # Estimate speed and draw bounding boxes out = speed.estimate_speed(im0) # Draw the speed region on the frame cv2.polylines(out, [np.array(speed_region)], isClosed=True, color=(0, 255, 0), thickness=2) # Resize the frame to fit the screen im0_resized = cv2.resize(out, (1280, 720)) # Resize for better screen fit # Show the resized frame cv2.imshow("Speed Estimation", im0_resized) video_writer.write(out) # Press 'q' to exit if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() video_writer.release() cv2.destroyAllWindows()
Output
YOLO v12
import cv2 from ultralytics import solutions import numpy as np cap = cv2.VideoCapture("cars_on_road.mp4") assert cap.isOpened(), "Error reading video file" # Capture video properties w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) # Video writer video_writer = cv2.VideoWriter("speed_management_yolov12.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # Define speed region points (adjust for your video resolution) speed_region = [(300, h - 200), (w - 100, h - 200), (w - 100, h - 270), (300, h - 270)] # Initialize SpeedEstimator speed = solutions.SpeedEstimator( show=False, # Disable internal window display model="yolo12s.pt", # Path to the YOLO model file region=speed_region, # Pass region points # classes=[0, 2], # Optional: Filter specific object classes (e.g., cars, trucks) # line_width=2, # Optional: Adjust the line width ) # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break # Estimate speed and draw bounding boxes out = speed.estimate_speed(im0) # Draw the speed region on the frame cv2.polylines(out, [np.array(speed_region)], isClosed=True, color=(0, 255, 0), thickness=2) # Resize the frame to fit the screen im0_resized = cv2.resize(out, (1280, 720)) # Resize for better screen fit # Show the resized frame cv2.imshow("Speed Estimation", im0_resized) video_writer.write(out) # Press 'q' to exit if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() video_writer.release() cv2.destroyAllWindows()
Output
Also Read: Top 30+ Computer Vision Models For 2025
Expert Opinions on YOLOv11 and YOLOv12
Muhammad Rizwan Munawar — Computer Vision Engineer at Ultralytics
“YOLOv12 introduces flash attention, which enhances accuracy, but it requires careful CUDA setup. It’s a solid step forward, especially for complex detection tasks, though YOLOv11 remains faster for real-time needs. In short, choose YOLOv12 for accuracy and YOLOv11 for speed.”
Linkedin Post – Is YOLOv12 really a state-of-the-art model? ?
Muhammad Rizwan, recently tested YOLOv11 and YOLOv12 side by side to break down their real-world performance. His findings highlight the trade-offs between the two models:
- Frames Per Second (FPS): YOLOv11 maintains an average of 40 FPS, while YOLOv12 lags behind at 30 FPS. This makes YOLOv11 the better choice for real-time applications where speed is critical, such as traffic monitoring or live video feeds.
- Training Time: YOLOv12 takes about 20% longer to train than YOLOv11. On a small dataset with 130 training images and 43 validation images, YOLOv11 completed training in 0.009 hours, while YOLOv12 needed 0.011 hours. While this might seem minor for small datasets, the difference becomes significant for larger-scale projects.
- Accuracy: Both models achieved similar accuracy after fine-tuning for 10 epochs on the same dataset. YOLOv12 didn’t dramatically outperform YOLOv11 in terms of accuracy, suggesting the newer model’s improvements lie more in architectural enhancements than raw detection precision.
- Flash Attention: YOLOv12 introduces flash attention, a powerful mechanism that speeds up and optimizes attention layers. However, there’s a catch — this feature isn’t natively supported on the CPU, and enabling it with CUDA requires careful version-specific setup. For teams without powerful GPUs or those working on edge devices, this can become a roadblock.
The PC specifications used for testing:
- GPU: NVIDIA RTX 3050
- CPU: Intel Core-i5-10400 @2.90GHz
- RAM: 64 GB
The model specifications:
- Model = YOLO11n.pt and YOLOv12n.pt
- Image size = 640 for inference
Conclusion
YOLO v12 marks a significant leap forward in real-time object detection, combining CNN speed with Transformer-like attention mechanisms. With improved accuracy, lower computational costs, and a range of model variants, YOLO v12 is poised to redefine the landscape of real-time vision applications. Whether for autonomous vehicles, security surveillance, or medical imaging, YOLO v12 sets a new standard for real-time object detection efficiency.
What’s Next?
- YOLO v13 Possibilities: Will future versions push the attention mechanisms even further?
- Edge Device Optimization: Can Flash Attention or Area Attention be optimized for lower-power devices?
To help you better understand the differences, I’ve attached some code snippets and output results in the comparison section. These examples illustrate how both YOLOv11 and YOLOv12 perform in real-world scenarios, from object counting to speed estimation and heatmaps. I’m excited to see how you guys perceive this new release! Are the improvements in accuracy and attention mechanisms enough to justify the trade-offs in speed? Or do you think YOLOv11 still holds its ground for most applications?
以上がオブジェクト検出にYolo V12を使用する方法は?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











メタのラマ3.2:マルチモーダルとモバイルAIの前進 メタは最近、ラマ3.2を発表しました。これは、モバイルデバイス向けに最適化された強力なビジョン機能と軽量テキストモデルを特徴とするAIの大幅な進歩です。 成功に基づいてo

ねえ、忍者をコーディング!その日はどのようなコーディング関連のタスクを計画していますか?このブログにさらに飛び込む前に、コーディング関連のすべての問題について考えてほしいです。 終わり? - &#8217を見てみましょう

Shopify CEOのTobiLütkeの最近のメモは、AIの能力がすべての従業員にとって基本的な期待であると大胆に宣言し、会社内の重大な文化的変化を示しています。 これはつかの間の傾向ではありません。これは、pに統合された新しい運用パラダイムです

今週のAIの風景:進歩、倫理的考慮、規制の議論の旋風。 Openai、Google、Meta、Microsoftのような主要なプレーヤーは、画期的な新しいモデルからLEの重要な変化まで、アップデートの急流を解き放ちました

導入 Openaiは、待望の「Strawberry」アーキテクチャに基づいて新しいモデルをリリースしました。 O1として知られるこの革新的なモデルは、推論能力を強化し、問題を通じて考えられるようになりました

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

SQLの変更テーブルステートメント:データベースに列を動的に追加する データ管理では、SQLの適応性が重要です。 その場でデータベース構造を調整する必要がありますか? Alter Tableステートメントはあなたの解決策です。このガイドの詳細は、コルを追加します

スタンフォード大学ヒト指向の人工知能研究所によってリリースされた2025年の人工知能インデックスレポートは、進行中の人工知能革命の良い概要を提供します。 4つの単純な概念で解釈しましょう:認知(何が起こっているのかを理解する)、感謝(利益を見る)、受け入れ(顔の課題)、責任(責任を見つける)。 認知:人工知能はどこにでもあり、急速に発展しています 私たちは、人工知能がどれほど速く発展し、広がっているかを強く認識する必要があります。人工知能システムは絶えず改善されており、数学と複雑な思考テストで優れた結果を達成しており、わずか1年前にこれらのテストで惨めに失敗しました。 2023年以来、複雑なコーディングの問題や大学院レベルの科学的問題を解決することを想像してみてください
