Python は icmp echo リクエストを構築し、ネットワーク検出機能のコード共有を実装します。
python発信icmp echo requesy请求
インポートソケット
インポート構造体
def checksum(source_string):
sum = 0
countTo = (len(source_string)/2)*2
count = 0
while count
sum = sum + thisVal
sum = sum & 0xffffffff
count = count + 2
if countTo
sum = sum & 0xffffffff
sum = (sum >> 16) + (sum & 0xffff)
sum = sum + (sum >> 16)
答え = ~sum
答え = 答え & 0xffff
答え = 答え >> 8 | (答え << 8 & 0xff00)
答えを返す
def ping(ip):
s =ソケット.ソケット(socket.AF_INET,ソケット.SOCK_RAW, 1)
パケット = struct.pack(
"!BBHHH", 8, 0, 0 , 0, 0
)
chksum=checksum(packet)
packet = struct.pack(
"!BBHHH", 8, 0, chksum, 0, 0
)
s.sendto(パケット, (ip, 1))
if __name__=='__main__':
ping('192.168.41.56')
扫描探测网络機能(网络探测器)
#!/usr/bin/env python3
# -*-coding: utf-8 -*-
'''
ネットワーク ホストの生存を検出します。
'''
インポート os
インポート構造
インポート配列
インポート時間
インポート ソケット
インポート IPy
インポート スレッド
class SendPingThr(threading.Thread):
'''
ICMP 要求メッセージを送信するスレッド。
参数:
ipPool -- 可迭代的IP地址池
icmpPacket -- 构造的icmp报文
icmpSocket -- icmp套字接
timeout -- 设置发送超时
'''
def __init__(self, ipPool, icmpPacket, icmpSocket, timeout=3):
threading.Thread.__init__(self)
self.Sock = icmpSocket
self.ipPool = ipPool
self.packet = icmpPacket
self.timeout = timeout
self.Sock.settimeout( timeout + 3 )
def run(self):
time.sleep(0.01) #等待接收线程启动
for ip in self.ipPool:
try:
self.Sock.sendto(self.packet, (ip, 0))
except socket.timeout:
break
time.sleep(self.timeout)
class Nscan:
'''
参数:
timeout -- Socket超时,默认3秒
IPv6 -- 是否是IPv6,默认为False
'''
def __init__(self, timeout=3, IPv6=False):
self.timeout = timeout
self.IPv6 = IPv6
self.__data = struct.pack('d', time.time()) #用于ICMP报文的负荷字节(8bit)
self.__id = os.getpid() #构造ICMP报文的ID字段,无实际意义
@property #属性装饰器
def __icmpSocket(self):
'''创建ICMP Socket'''
if not self.IPv6:
Sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.getprotobyname("icmp"))
else:
Sock = socket.socket(socket.AF_INET6, socket.SOCK_RAW, socket.getprotobyname("ipv6-icmp"))
return Sock
def __inCksum(self, packet):
'''ICMP 报文效验和计算方法'''
if len(packet) & 1:
packet = packet + '\0'
words = array.array('h', packet)
sum = 0
for word in words:
sum += (word & 0xffff)
sum = (sum >> 16) + (sum & 0xffff)
sum = sum + (sum >> 16)
return (~sum) & 0xffff
@property
def __icmpPacket(self):
'''构造 ICMP 报文'''
if not self.IPv6:
header = struct.pack('bbHHh', 8, 0, 0, self.__id, 0) # TYPE、CODE、CHKSUM、ID、SEQ
else:
header = struct.pack('BbHHh', 128, 0, 0, self.__id, 0)
packet = header + self.__data # packet without checksum
chkSum = self.__inCksum(packet) # make checksum
if not self.IPv6:
header = struct.pack('bbHHh', 8, 0, chkSum, self.__id, 0)
else:
header = struct.pack('BbHHh', 128, 0, chkSum, self.__id, 0)
return header + self.__data # packet *with* checksum
def isUnIP(self 、IP):
''' IP の有無が合法的单播地址'''
IP = [int(x) for x in IP.split('.') if x.isdigit() ]
if len(IP) == 4:
if (0 return True
return False
def makeIpPool(self, startIP, lastIP):
'''址池'''
IPver = 6 if self.IPv6 else 4
intIP = lambda ip: IPy.IP(ip).int()
ipPool = {IPy.intToIp(ip, IPver) for ip in range(intIP(startIP), intIP(lastIP)+1)}
return {ip for ip in ipPool if self.isUnIP(ip)}
def mPing(self, ipPool) :
''利用ICMP报文探测网络主机生存
パラメータ:
ipPool -- 可迭代的IP地址池
''
Sock = self.__icmpSocket
Sock.settimeout(self.timeout)
packet = self.__icmpPacket
recvFroms = set() #受信收線程的来源IP地址容器
sendThr = SendPingThr(ipPool, packet,ああ、 self.timeout)
sendThr.start()
while True:
try:
recvFroms.add(Sock.recvfrom(1024)[1][0])
ただし、例外:
pass
最後に:
if not sendThr.isAlive():
Break
return recvFroms & ipPool
if __name__=='__main__':
s = Nscan()
ipPool = s.makeIpPool('192.168.0.1', '192.168.0.254')
print( s.mPing(ipPool) )

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています
