JavaScript 非同期プログラミングについてもう一度話しましょう_JavaScript スキル
フロントエンドの発展に伴い、非同期という言葉がますます一般的になってきました。次のような非同期タスクがあるとします。
サーバーに対していくつかのリクエストを開始し、各リクエストの結果が次のリクエストのパラメータとして使用されます。
何をしなければならないかを見てみましょう:
コールバック
最初に思い浮かび、最も一般的に使用されるのは、単純なカプセル化を作成してみましょう。
let makeAjaxCall = (url, cb) => { // do some ajax // callback with result } makeAjaxCall('http://url1', (result) => { result = JSON.parse(result) })
うーん、なかなかいい感じですね!しかし、複数のタスクをネストしようとすると、コードは次のようになります:
makeAjaxCall('http://url1', (result) => { result = JSON.parse(result) makeAjaxCall(`http://url2?q=${result.query}`, (result) => { result = JSON.parse(result) makeAjaxCall(`http://url3?q=${result.query}`, (result) => { // ... }) }) })
なんと!その山を地獄に落ちさせましょう })
そこで、JavaScript イベント モデル を使用してみます。
1. パブリッシュ/サブスクライブ
DOM イベントの処理では、Pub/Sub は非常に一般的なメカニズムです。たとえば、要素にイベント監視を追加する必要があります。
elem.addEventListener(type, (evt) => { // handler })
最初に、配送センターを構築し、on / Emit メソッドを追加します。
let PubSub = { events: {}, on(type, handler) { let events = this.events events[type] = events[type] || [] events[type].push(handler) }, emit(type, ...datas) { let events = this.events if (!events[type]) { return } events[type].forEach((handler) => handler(...datas)) } }
const urls = [ 'http://url1', 'http://url2', 'http://url3' ] let makeAjaxCall = (url) => { // do some ajax PubSub.emit('ajaxEnd', result) } let subscribe = (urls) => { let index = 0 PubSub.on('ajaxEnd', (result) => { result = JSON.parse(result) if (urls[++index]) { makeAjaxCall(`${urls[index]}?q=${result.query}`) } }) makeAjaxCall(urls[0]) }
2. 約束
本当の革命的な変更は Promise 仕様です。 Promise を使用すると、次のような非同期タスクを完了できます:
let makeAjaxCall = (url) => { return new Promise((resolve, reject) => { // do some ajax resolve(result) }) } makeAjaxCall('http://url1') .then(JSON.parse) .then((result) => makeAjaxCall(`http://url2?q=${result.query}`)) .then(JSON.parse) .then((result) => makeAjaxCall(`http://url3?q=${result.query}`))
心配しないでください、若者。さらに優れたものがあります:
3. ジェネレーター
ES6 のもう 1 つの大きなキラーはジェネレーター[2]です。ジェネレーター関数では、yield ステートメントを通じて関数の実行を中断し、関数の外部の next メソッドを通じてステートメントを反復できます。さらに重要なのは、next メソッドを通じて関数にデータを注入して、関数の動作を動的に変更できることです。関数。例:
function* gen() { let a = yield 1 let b = yield a * 2 return b } let it = gen() it.next() // output: {value: 1, done: false} it.next(10) // a = 10, output: {value: 20, done: false} it.next(100) // b = 100, output: {value: 100, done: true}
let makeAjaxCall = (url) => { // do some ajax iterator.next(result) } function* requests() { let result = yield makeAjaxCall('http://url1') result = JSON.parse(result) result = yield makeAjaxCall(`http://url2?q=${result.query}`) result = JSON.parse(result) result = yield makeAjaxCall(`http://url3?q=${result.query}`) } let iterator = requests() iterator.next() // get everything start
心配しないで、Promise と Generator を混ぜて、どのような黒魔術が生成されるかを見てみましょう:
let makeAjaxCall = (url) => { return new Promise((resolve, reject) => { // do some ajax resolve(result) }) } let runGen = (gen) => { let it = gen() let continuer = (value, err) => { let ret try { ret = err ? it.throw(err) : it.next(value) } catch (e) { return Promise.reject(e) } if (ret.done) { return ret.value } return Promise .resolve(ret.value) .then(continuer) .catch((e) => continuer(null, e)) } return continuer() } function* requests() { let result = yield makeAjaxCall('http://url1') result = JSON.parse(result) result = yield makeAjaxCall(`http://url2?q=${result.query}`) result = JSON.parse(result) result = yield makeAjaxCall(`http://url3?q=${result.query}`) } runGen(requests)
実際、この runGen メソッドは ECMAScript 7 非同期関数の実装です:
4. 非同期関数
ES7 では、より自然な機能である async 関数[3]が導入されています。 async 関数を使用すると、次のようにタスクを完了できます:
let makeAjaxCall = (url) => { return new Promise((resolve, reject) => { // do some ajax resolve(result) }) } ;(async () => { let result = await makeAjaxCall('http://url1') result = JSON.parse(result) result = await makeAjaxCall(`http://url2?q=${result.query}`) result = JSON.parse(result) result = await makeAjaxCall(`http://url3?q=${result.query}`) })()
上記は、この記事にまとめられたいくつかの JavaScript 非同期プログラミング モードです。皆さんの学習に役立つことを願っています。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









概要: C++ の非同期プログラミングを使用すると、時間のかかる操作を待たずにマルチタスクを行うことができます。関数ポインターを使用して、関数へのポインターを作成します。コールバック関数は、非同期操作が完了すると呼び出されます。 boost::asio などのライブラリは、非同期プログラミングのサポートを提供します。実際のケースでは、関数ポインターと boost::asio を使用して非同期ネットワーク リクエストを実装する方法を示します。

JavaScript チュートリアル: HTTP ステータス コードを取得する方法、特定のコード例が必要です 序文: Web 開発では、サーバーとのデータ対話が頻繁に発生します。サーバーと通信するとき、多くの場合、返された HTTP ステータス コードを取得して操作が成功したかどうかを判断し、さまざまなステータス コードに基づいて対応する処理を実行する必要があります。この記事では、JavaScript を使用して HTTP ステータス コードを取得する方法を説明し、いくつかの実用的なコード例を示します。 XMLHttpRequestの使用

Java フレームワークでの非同期プログラミングにおける 3 つの一般的な問題と解決策: コールバック地獄: Promise または CompletableFuture を使用して、より直感的なスタイルでコールバックを管理します。リソースの競合: 同期プリミティブ (ロックなど) を使用して共有リソースを保護し、スレッドセーフなコレクション (ConcurrentHashMap など) の使用を検討します。未処理の例外: タスク内の例外を明示的に処理し、例外処理フレームワーク (CompletableFuture.Exceptionally() など) を使用して例外を処理します。

Go フレームワークは Go の同時実行性と非同期機能を使用して、同時タスクと非同期タスクを効率的に処理するためのメカニズムを提供します。 1. 同時実行性は Goroutine によって実現され、複数のタスクを同時に実行できます。 2. 非同期プログラミングはチャネルを通じて実装されます。メインスレッドをブロックせずに実行可能。 3. HTTP リクエストの同時処理、データベース データの非同期取得などの実用的なシナリオに適しています。

JavaScript で HTTP ステータス コードを取得する方法の紹介: フロントエンド開発では、バックエンド インターフェイスとの対話を処理する必要があることが多く、HTTP ステータス コードはその非常に重要な部分です。 HTTP ステータス コードを理解して取得すると、インターフェイスから返されたデータをより適切に処理できるようになります。この記事では、JavaScript を使用して HTTP ステータス コードを取得する方法と、具体的なコード例を紹介します。 1. HTTP ステータス コードとは何ですか? HTTP ステータス コードとは、ブラウザがサーバーへのリクエストを開始したときに、サービスが

1. 非同期プログラミングを使用する理由は何ですか?従来のプログラミングではブロッキング I/O が使用されます。つまり、プログラムは操作が完了するまで待機してから続行します。これは単一のタスクではうまく機能する可能性がありますが、多数のタスクを処理する場合にはプログラムの速度が低下する可能性があります。非同期プログラミングは、従来のブロッキング I/O の制限を破り、非ブロッキング I/O を使用します。つまり、プログラムは、タスクの完了を待たずに、タスクを別のスレッドまたはイベント ループに分散して実行できます。これにより、プログラムは複数のタスクを同時に処理できるようになり、プログラムのパフォーマンスと効率が向上します。 2. Python 非同期プログラミングの基礎 Python 非同期プログラミングの基礎は、コルーチンとイベント ループです。コルーチンは、関数の一時停止と再開を切り替えることができる関数です。イベントループはスケジュールを担当します

PHP での非同期プログラミングの利点には、スループットの向上、待ち時間の短縮、リソース使用率の向上、およびスケーラビリティが含まれます。欠点としては、複雑さ、デバッグの難しさ、ライブラリのサポートの制限などが挙げられます。実際のケースでは、WebSocket 接続の処理に ReactPHP が使用され、非同期プログラミングの実際的な応用例が示されています。

利点: パフォーマンスの向上: マルチコア プロセッサを最大限に活用した並列タスク実行。スケーラビリティ: より大きなワークロードを処理するために簡単に拡張できます。応答性: メインスレッドはブロックされないため、アプリケーションの応答性が維持されます。リソースの最適化: ロックおよび同期構造の必要性を回避します。課題: コードの複雑さ: 複数の独立したタスクの管理。デバッグの難しさ: タスクは別のスレッドまたはコルーチンで実行されます。エラー処理: 同時環境でのエラー処理は複雑であり、追加の対策が必要です。実際のケース: ファイルを並行してダウンロードし、Goroutine を使用して複数のファイルを同時にダウンロードし、非同期プログラミングがどのようにパフォーマンスを向上させるかを示します。
