Python パフォーマンス分析ツールの概要
パフォーマンス分析およびチューニングツールの紹介
プログラムの実行効率を向上させたい、どの部分がボトルネックになっているのかを確認したい、実行時のメモリやCPUの使用状況を知りたい、ということは必ずあります。プログラムが実行中です。現時点では、プログラムのパフォーマンス分析とチューニングを実行するためのいくつかの方法が必要になります。
コンテキスト マネージャーによる
コンテキスト マネージャーは、以前の timeit の紹介記事で行われたことを参照して、クラスの __enter__ メソッドと __exit__ メソッドを定義することで、独自にタイマーを実装できます。
# timer.py import time class Timer(object): def __init__(self, verbose=False): self.verbose = verbose def __enter__(self): self.start = time.time() return self def __exit__(self, *args): self.end = time.time() self.secs = self.end - self.start self.msecs = self.secs * 1000 # 毫秒 if self.verbose: print 'elapsed time: %f ms' % self.msecs
from timer import Timer with Timer() as t: foo() print "=> foo() spends %s s" % t.secs
import time from functools import wraps def timer(function): @wraps(function) def function_timer(*args, **kwargs): t0 = time.time() result = function(*args, **kwargs) t1 = time.time() print ("Total time running %s: %s seconds" % (function.func_name, str(t1-t0)) ) return result return function_timer
@timer def my_sum(n): return sum([i for i in range(n)]) if __name__ == "__main__": my_sum(10000000)
➜ python profile.py Total time running my_sum: 0.817697048187 seconds
使用例は以下のとおりです:
➜ time python profile.py Total time running my_sum: 0.854454040527 seconds python profile.py 0.79s user 0.18s system 98% cpu 0.977 total
そのうち、合計時間 - (ユーザー時間 + システム時間) = 入出力および他のタスクのシステム実行に費やされる時間
#coding=utf8 def sum_num(max_num): total = 0 for i in range(max_num): total += i return total def test(): total = 0 for i in range(40000): total += i t1 = sum_num(100000) t2 = sum_num(200000) t3 = sum_num(300000) t4 = sum_num(400000) t5 = sum_num(500000) test2() return total def test2(): total = 0 for i in range(40000): total += i t6 = sum_num(600000) t7 = sum_num(700000) return total if __name__ == "__main__": import cProfile # # 直接把分析结果打印到控制台 # cProfile.run("test()") # # 把分析结果保存到文件中 # cProfile.run("test()", filename="result.out") # 增加排序方式 cProfile.run("test()", filename="result.out", sort="cumulative")
import pstats # 创建Stats对象 p = pstats.Stats("result.out") # strip_dirs(): 去掉无关的路径信息 # sort_stats(): 排序,支持的方式和上述的一致 # print_stats(): 打印分析结果,可以指定打印前几行 # 和直接运行cProfile.run("test()")的结果是一样的 p.strip_dirs().sort_stats(-1).print_stats() # 按照函数名排序,只打印前3行函数的信息, 参数还可为小数,表示前百分之几的函数信息 p.strip_dirs().sort_stats("name").print_stats(3) # 按照运行时间和函数名进行排序 p.strip_dirs().sort_stats("cumulative", "name").print_stats(0.5) # 如果想知道有哪些函数调用了sum_num p.print_callers(0.5, "sum_num") # 查看test()函数中调用了哪些函数 p.print_callees("test")
➜ python python profile.py Random listing order was used List reduced from 6 to 2 due to restriction <'test'> Function called... ncalls tottime cumtime profile.py:24(test2) -> 2 0.061 0.077 profile.py:3(sum_num) 1 0.000 0.000 {range} profile.py:10(test) -> 5 0.073 0.094 profile.py:3(sum_num) 1 0.002 0.079 profile.py:24(test2) 1 0.001 0.001 {range}
形式は次のようになります: class profile.Profile(timer=None, timeunit=0.0, subcalls=True,builtins=True)
次の例は公式ドキュメントからのものです:
import cProfile, pstats, StringIO pr = cProfile.Profile() pr.enable() # ... do something ... pr.disable() s = StringIO.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print s.getvalue()
lineprofiler
lineprofiler是一个对函数进行逐行性能分析的工具,可以参见github项目说明,地址: https://github.com/rkern/line...
示例
#coding=utf8 def sum_num(max_num): total = 0 for i in range(max_num): total += i return total @profile # 添加@profile 来标注分析哪个函数 def test(): total = 0 for i in range(40000): total += i t1 = sum_num(10000000) t2 = sum_num(200000) t3 = sum_num(300000) t4 = sum_num(400000) t5 = sum_num(500000) test2() return total def test2(): total = 0 for i in range(40000): total += i t6 = sum_num(600000) t7 = sum_num(700000) return total test()
通过 kernprof 命令来注入分析,运行结果如下:
➜ kernprof -l -v profile.py Wrote profile results to profile.py.lprof Timer unit: 1e-06 s Total time: 3.80125 s File: profile.py Function: test at line 10 Line # Hits Time Per Hit % Time Line Contents ============================================================== 10 @profile 11 def test(): 12 1 5 5.0 0.0 total = 0 13 40001 19511 0.5 0.5 for i in range(40000): 14 40000 19066 0.5 0.5 total += i 15 16 1 2974373 2974373.0 78.2 t1 = sum_num(10000000) 17 1 58702 58702.0 1.5 t2 = sum_num(200000) 18 1 81170 81170.0 2.1 t3 = sum_num(300000) 19 1 114901 114901.0 3.0 t4 = sum_num(400000) 20 1 155261 155261.0 4.1 t5 = sum_num(500000) 21 1 378257 378257.0 10.0 test2() 22 23 1 2 2.0 0.0 return total
hits(执行次数) 和 time(耗时) 值高的地方是有比较大优化空间的地方。
memoryprofiler
类似于"lineprofiler"对基于行分析程序内存使用情况的模块。github 地址:https://github.com/fabianp/me... 。ps:安装 psutil, 会分析的更快。
同样是上面"lineprofiler"中的代码,运行 python -m memory_profiler profile.py 命令生成结果如下:
➜ python -m memory_profiler profile.py Filename: profile.py Line # Mem usage Increment Line Contents ================================================ 10 24.473 MiB 0.000 MiB @profile 11 def test(): 12 24.473 MiB 0.000 MiB total = 0 13 25.719 MiB 1.246 MiB for i in range(40000): 14 25.719 MiB 0.000 MiB total += i 15 16 335.594 MiB 309.875 MiB t1 = sum_num(10000000) 17 337.121 MiB 1.527 MiB t2 = sum_num(200000) 18 339.410 MiB 2.289 MiB t3 = sum_num(300000) 19 342.465 MiB 3.055 MiB t4 = sum_num(400000) 20 346.281 MiB 3.816 MiB t5 = sum_num(500000) 21 356.203 MiB 9.922 MiB test2() 22 23 356.203 MiB 0.000 MiB return total

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

hadidb:軽量で高レベルのスケーラブルなPythonデータベースHadIDB(HadIDB)は、Pythonで記述された軽量データベースで、スケーラビリティが高くなっています。 PIPインストールを使用してHADIDBをインストールする:PIPINSTALLHADIDBユーザー管理CREATEユーザー:CREATEUSER()メソッド新しいユーザーを作成します。 Authentication()メソッドは、ユーザーのIDを認証します。 fromhadidb.operationimportuseruser_obj = user( "admin"、 "admin")user_obj。

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

MySQLは、基本的なデータストレージと管理のためにネットワーク接続なしで実行できます。ただし、他のシステムとのやり取り、リモートアクセス、または複製やクラスタリングなどの高度な機能を使用するには、ネットワーク接続が必要です。さらに、セキュリティ対策(ファイアウォールなど)、パフォーマンスの最適化(適切なネットワーク接続を選択)、およびデータバックアップは、インターネットに接続するために重要です。

MySQL接続は、次の理由が原因である可能性があります。MySQLサービスは開始されず、ファイアウォールは接続をインターセプトし、ポート番号が間違っています。ユーザー名またはパスワードが間違っています。My.cnfのリスニングアドレスは不適切に構成されています。トラブルシューティング手順には以下が含まれます。 2.ファイアウォール設定を調整して、MySQLがポート3306をリッスンできるようにします。 3.ポート番号が実際のポート番号と一致していることを確認します。 4.ユーザー名とパスワードが正しいかどうかを確認します。 5. my.cnfのバインドアドレス設定が正しいことを確認してください。

MySQLワークベンチは、構成が正しい場合、MariadBに接続できます。最初にコネクタタイプとして「mariadb」を選択します。接続構成では、ホスト、ポート、ユーザー、パスワード、およびデータベースを正しく設定します。接続をテストするときは、ユーザー名とパスワードが正しいかどうか、ポート番号が正しいかどうか、ファイアウォールが接続を許可するかどうか、データベースが存在するかどうか、MariadBサービスが開始されていることを確認してください。高度な使用法では、接続プーリングテクノロジーを使用してパフォーマンスを最適化します。一般的なエラーには、不十分な権限、ネットワーク接続の問題などが含まれます。エラーをデバッグするときは、エラー情報を慎重に分析し、デバッグツールを使用します。ネットワーク構成を最適化すると、パフォーマンスが向上する可能性があります

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

データの専門家として、さまざまなソースから大量のデータを処理する必要があります。これは、データ管理と分析に課題をもたらす可能性があります。幸いなことに、AWS GlueとAmazon Athenaの2つのAWSサービスが役立ちます。
