ホームページ バックエンド開発 PHPチュートリアル CI フレームワークによってカプセル化された一般的な画像処理メソッド (サムネイル、ウォーターマーク、回転、アップロードなど)_php の例

CI フレームワークによってカプセル化された一般的な画像処理メソッド (サムネイル、ウォーターマーク、回転、アップロードなど)_php の例

Dec 05, 2016 pm 01:28 PM
CIフレームワーク 画像処理 カプセル化

この記事の例では、CI フレームワークによってカプセル化された一般的な画像処理方法について説明します。参考のために皆さんと共有してください。詳細は次のとおりです:

実際、WeChat携帯電話に写真をアップロードするときは、データ通信量を節約するためにリスト写真にサムネイルを使用するのが最善です、それはまた携帯電話に騙され、1ポイントの料金請求の後に停止しました。私も酔っていたので交通量が90元になったときに止まりました。 。 。

これ以上はナンセンスです。以下は CI の組み込み画像処理ライブラリを使用して書かれています。なので、漏れがあればご指摘ください。

リーリー

以下はフロントエンドの基本的なHTMLコードです:

リーリー

CodeIgniter 関連のコンテンツに興味のある読者は、このサイトの特別トピックをチェックしてください: 「codeigniter 入門チュートリアル」、「CI (CodeIgniter) フレームワーク上級チュートリアル」、「php 優れた開発フレームワークの概要」、「ThinkPHP 入門チュートリアル」、 『ThinkPHP共通メソッドまとめ』『Zend FrameWorkフレームワーク入門チュートリアル』『phpオブジェクト指向プログラミング入門チュートリアル』『php+mysqlデータベース操作入門チュートリアル』『php共通データベース操作スキルまとめ』

この記事が、CodeIgniter フレームワークに基づく皆様の PHP プログラム設計に役立つことを願っています。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

画像処理タスクでワッサーシュタイン距離はどのように使用されますか? 画像処理タスクでワッサーシュタイン距離はどのように使用されますか? Jan 23, 2024 am 10:39 AM

EarthMover's Distance (EMD) としても知られるワッサーシュタイン距離は、2 つの確率分布間の差を測定するために使用される指標です。従来の KL 発散または JS 発散と比較して、Wasserstein 距離は分布間の構造情報を考慮に入れるため、多くの画像処理タスクで優れたパフォーマンスを示します。 Wasserstein 距離は、2 つのディストリビューション間の最小輸送コストを計算することにより、あるディストリビューションを別のディストリビューションに変換するために必要な最小作業量を測定できます。このメトリクスは、分布間の幾何学的差異を捉えることができるため、画像生成やスタイル転送などのタスクで重要な役割を果たします。したがって、ワッサーシュタイン距離が概念になります

ビジョントランスフォーマー(VIT)モデルの動作原理と特性の詳細な分析 ビジョントランスフォーマー(VIT)モデルの動作原理と特性の詳細な分析 Jan 23, 2024 am 08:30 AM

VisionTransformer (VIT) は、Google が提案した Transformer ベースの画像分類モデルです。従来の CNN モデルとは異なり、VIT は画像をシーケンスとして表し、画像のクラス ラベルを予測することで画像の構造を学習します。これを実現するために、VIT は入力イメージを複数のパッチに分割し、チャネルを通じて各パッチのピクセルを連結し、線形投影を実行して目的の入力寸法を実現します。最後に、各パッチが単一のベクトルに平坦化され、入力シーケンスが形成されます。 Transformer のセルフ アテンション メカニズムを通じて、VIT は異なるパッチ間の関係を捕捉し、効果的な特徴抽出と分類予測を実行できます。このシリアル化された画像表現は、

AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き) AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き) Jan 24, 2024 pm 09:57 PM

古い写真の修復は、人工知能テクノロジーを使用して古い写真を修復、強化、改善する方法です。このテクノロジーは、コンピューター ビジョンと機械学習アルゴリズムを使用して、古い写真の損傷や欠陥を自動的に特定して修復し、写真をより鮮明に、より自然に、より現実的に見せることができます。古い写真の復元の技術原則には、主に次の側面が含まれます: 1. 画像のノイズ除去と強化 古い写真を復元する場合、最初にノイズ除去と強化を行う必要があります。平均値フィルタリング、ガウス フィルタリング、バイラテラル フィルタリングなどの画像処理アルゴリズムとフィルタを使用して、ノイズやカラー スポットの問題を解決し、写真の品質を向上させることができます。 2. 画像の修復と修復 古い写真には、傷、ひび割れ、色あせなどの欠陥や損傷がある場合があります。これらの問題は、画像の復元および修復アルゴリズムによって解決できます。

画像超解像再構成におけるAI技術の応用 画像超解像再構成におけるAI技術の応用 Jan 23, 2024 am 08:06 AM

超解像度画像再構成は、畳み込みニューラル ネットワーク (CNN) や敵対的生成ネットワーク (GAN) などの深層学習技術を使用して、低解像度画像から高解像度画像を生成するプロセスです。この方法の目的は、低解像度の画像を高解像度の画像に変換することで、画像の品質と詳細を向上させることです。この技術は、医療画像、監視カメラ、衛星画像など、さまざまな分野で幅広く応用されています。超解像度画像再構成により、より鮮明で詳細な画像を取得できるため、画像内のターゲットや特徴をより正確に分析および識別することができます。再構成方法 超解像度画像の再構成方法は、一般に、補間ベースの方法と深層学習ベースの方法の 2 つのカテゴリに分類できます。 1) 補間による手法 補間による超解像画像再構成

スケール不変特徴量 (SIFT) アルゴリズム スケール不変特徴量 (SIFT) アルゴリズム Jan 22, 2024 pm 05:09 PM

スケール不変特徴変換 (SIFT) アルゴリズムは、画像処理およびコンピューター ビジョンの分野で使用される特徴抽出アルゴリズムです。このアルゴリズムは、コンピュータ ビジョン システムにおけるオブジェクト認識とマッチングのパフォーマンスを向上させるために 1999 年に提案されました。 SIFT アルゴリズムは堅牢かつ正確であり、画像認識、3 次元再構成、ターゲット検出、ビデオ追跡などの分野で広く使用されています。複数のスケール空間内のキーポイントを検出し、キーポイントの周囲の局所特徴記述子を抽出することにより、スケール不変性を実現します。 SIFT アルゴリズムの主なステップには、スケール空間の構築、キー ポイントの検出、キー ポイントの位置決め、方向の割り当て、および特徴記述子の生成が含まれます。これらのステップを通じて、SIFT アルゴリズムは堅牢でユニークな特徴を抽出することができ、それによって効率的な画像処理を実現します。

TrendForce: Nvidia の Blackwell プラットフォーム製品により、TSMC の CoWoS 生産能力は今年 150% 増加します TrendForce: Nvidia の Blackwell プラットフォーム製品により、TSMC の CoWoS 生産能力は今年 150% 増加します Apr 17, 2024 pm 08:00 PM

4月17日の当サイトのニュースによると、TrendForceは最近、Nvidiaの新しいBlackwellプラットフォーム製品に対する需要は強気で、2024年にはTSMCのCoWoSパッケージング総生産能力が150%以上増加すると予想されるレポートを発表した。 NVIDIA Blackwell の新しいプラットフォーム製品には、B シリーズ GPU と、NVIDIA 独自の GraceArm CPU を統合する GB200 アクセラレータ カードが含まれます。 TrendForce は、サプライチェーンが現在 GB200 について非常に楽観的であることを確認しており、2025 年の出荷台数は 100 万台を超え、Nvidia のハイエンド GPU の 40 ~ 50% を占めると予想されています。 Nvidiaは今年下半期にGB200やB100などの製品を提供する予定だが、上流のウェーハパッケージングではさらに複雑な製品を採用する必要がある。

畳み込みニューラル ネットワークを使用した画像のノイズ除去 畳み込みニューラル ネットワークを使用した画像のノイズ除去 Jan 23, 2024 pm 11:48 PM

畳み込みニューラル ネットワークは、画像のノイズ除去タスクで優れたパフォーマンスを発揮します。学習したフィルターを利用してノイズを除去し、元の画像を復元します。この記事では、畳み込みニューラル ネットワークに基づく画像ノイズ除去方法を詳しく紹介します。 1. 畳み込みニューラル ネットワークの概要 畳み込みニューラル ネットワークは、複数の畳み込み層、プーリング層、全結合層の組み合わせを使用して画像の特徴を学習および分類する深層学習アルゴリズムです。畳み込み層では、畳み込み演算を通じて画像の局所的な特徴が抽出され、それによって画像内の空間相関が捕捉されます。プーリング層は、特徴の次元を削減することで計算量を削減し、主要な特徴を保持します。完全に接続された層は、学習した特徴とラベルをマッピングして画像分類やその他のタスクを実装する役割を果たします。このネットワーク構造の設計により、畳み込みニューラル ネットワークは画像処理と認識に役立ちます。

Pythonで画像処理と認識を行う方法 Pythonで画像処理と認識を行う方法 Oct 20, 2023 pm 12:10 PM

Python で画像処理と認識を行う方法 概要: 最新のテクノロジーにより、画像処理と認識が多くの分野で重要なツールになりました。 Python は、豊富な画像処理および認識ライブラリを備えた、習得と使用が簡単なプログラミング言語です。この記事では、Python を使用して画像処理と認識を行う方法と、具体的なコード例を紹介します。画像処理: 画像処理は、画質を向上させたり、画像から情報を抽出したりするために、画像にさまざまな操作や変換を実行するプロセスです。 Python の PIL ライブラリ (Pi

See all articles