Python のマルチスレッドを深く理解する初心者必読の本。
例 1
5 つの異なる URL をリクエストします:
シングルスレッド
import time import urllib2 defget_responses(): urls=[ ‘http://www.baidu.com', ‘http://www.amazon.com', ‘http://www.ebay.com', ‘http://www.alibaba.com', ‘http://www.jb51.net' ] start=time.time() forurlinurls: printurl resp=urllib2.urlopen(url) printresp.getcode() print”Elapsed time: %s”%(time.time()-start) get_responses()
出力は次のとおりです:
http://www.baidu.com200
http://www.amazon.com200
http:// www .ebay.com200
http://www.alibaba.com200
http://www.jb51.net200
経過
time: 3.0814409256
説明:
URLは順番にリクエストされます
CPUが1つのURLから応答を取得しない限り、次のURLをリクエストしません
ネットワークリクエストには長い時間がかかるため、CPUは戻り時間を待っていますのネットワーク要求はアイドル状態です。
マルチスレッド
import urllib2 import time from threading import Thread classGetUrlThread(Thread): def__init__(self, url): self.url=url super(GetUrlThread,self).__init__() defrun(self): resp=urllib2.urlopen(self.url) printself.url, resp.getcode() defget_responses(): urls=[ ‘http://www.baidu.com', ‘http://www.amazon.com', ‘http://www.ebay.com', ‘http://www.alibaba.com', ‘http://www.jb51.net' ] start=time.time() threads=[] forurlinurls: t=GetUrlThread(url) threads.append(t) t.start() fortinthreads: t.join() print”Elapsed time: %s”%(time.time()-start) get_responses()
出力:
http://www.jb51.net200
http://www.baidu.com200
http://www.amazon.com200
http://www.alibaba. com200
http://www.ebay.com200
経過
time:0.689890861511
説明:
プログラムの実行時間の向上を意識しました
スレッド内のネットワークリクエストが返されるのを待っているときに、CPUの待ち時間を短縮するためにマルチスレッドプログラムを作成しました。他のスレッドに切り替えて、他のスレッドでネットワーク要求を実行できます。
1 つのスレッドが 1 つの URL を処理することを期待しているため、スレッド クラスをインスタンス化するときに URL を渡します。
スレッドの実行とは、クラス内の run() メソッドを実行することを意味します。
何はともあれ、各スレッドで run() を実行する必要があります。
URL ごとにスレッドを作成し、start() メソッドを呼び出します。これにより、スレッド内で run() メソッドを実行するように CPU に指示されます。
すべてのスレッドの実行が完了するまでの時間を計算したいので、join() メソッドを呼び出します。
join() は、次の命令を実行する前に、このスレッドが終了するまで待機するようにメインスレッドに通知できます。
各スレッドで join() メソッドを呼び出したので、すべてのスレッドが実行を完了した後の実行時間を計算しました。
スレッドについて:
cpu は、start() を呼び出した直後に run() メソッドを実行しない場合があります。
異なるスレッド間での run() の実行順序を決定することはできません。
単一スレッドの場合、run() メソッド内のステートメントが順番に実行されることが保証されます。
これは、スレッド内の URL が最初にリクエストされ、その後返された結果が出力されるためです。
例 2
プログラムを使用してマルチスレッド間のリソース競合を実証し、この問題を解決します。
from threading import Thread #define a global variable some_var=0 classIncrementThread(Thread): defrun(self): #we want to read a global variable #and then increment it globalsome_var read_value=some_var print”some_var in %s is %d”%(self.name, read_value) some_var=read_value+1 print”some_var in %s after increment is %d”%(self.name, some_var) defuse_increment_thread(): threads=[] foriinrange(50): t=IncrementThread() threads.append(t) t.start() fortinthreads: t.join() print”After 50 modifications, some_var should have become 50″ print”After 50 modifications, some_var is %d”%(some_var,) use_increment_thread()
このプログラムを複数回実行すると、さまざまな異なる結果が表示されます。
説明:
グローバル変数があり、すべてのスレッドがそれを変更しようとしています。
すべてのスレッドはこのグローバル変数を追加する必要があります
1
。
スレッド数が 50 の場合、最終値は 50 になるはずですが、実際はそうではありません。
なぜ50に達しなかったのですか?
some_var が 15 の場合、スレッド t1 は some_var を読み取ります。このとき、CPU は別のスレッド t2 に制御を渡します。
t2 スレッドによって読み取られた some_var も 15 です
t1 と t2 の両方で some_var が 16 に増加します
その時点で期待していたのは t1 でした
t2 2 つのスレッドは some_var + を作成します
2 は 17 になります
ここでリソースの争奪戦が発生します。
他のスレッドでも同様の状況が発生する可能性があるため、最終結果は50未満になる可能性があります。
リソース競合の解決
from threading import Lock, Thread lock=Lock() some_var=0 classIncrementThread(Thread): defrun(self): #we want to read a global variable #and then increment it globalsome_var lock.acquire() read_value=some_var print”some_var in %s is %d”%(self.name, read_value) some_var=read_value+1 print”some_var in %s after increment is %d”%(self.name, some_var) lock.release() defuse_increment_thread(): threads=[] foriinrange(50): t=IncrementThread() threads.append(t) t.start() fortinthreads: t.join() print”After 50 modifications, some_var should have become 50″ print”After 50 modifications, some_var is %d”%(some_var,) use_increment_thread()
このプログラムを再度実行すると、期待した結果が得られました。
説明:
ロック
競合状態を防ぐために使用されます
スレッド t1 が一部の操作を実行する前にロックを取得した場合。 t1 がロックを解放する前に、他のスレッドは同じ操作を実行しません
確認したいのは、スレッド t1 が some_var を読み取ると、t1 が some_var の変更を完了するまで他のスレッドは some_var を読み取ることができないということです
このように読んでください。そして、some_var の変更は論理的になりますアトミック操作。
例 3
例を使用して、あるスレッドが他のスレッドの変数 (非グローバル変数) に影響を与えることができないことを証明してみましょう。
time.sleep() はスレッドを一時停止し、スレッドの切り替えを強制的に実行できます。
from threading import Thread import time classCreateListThread(Thread): defrun(self): self.entries=[] foriinrange(10): time.sleep(1) self.entries.append(i) printself.entries defuse_create_list_thread(): foriinrange(3): t=CreateListThread() t.start() use_create_list_thread()
何度か実行した後、期待していた結果が出力されないことがわかりました。 1 つのスレッドが印刷中に CPU が別のスレッドに切り替わるため、誤った結果が生成されます。必ず印刷する必要があります
self.entries は、他のスレッドによる印刷の中断を防ぐための論理アトミック操作です。
Lock() を使用しました。以下の例を見てください。
from threading import Thread, Lock import time lock=Lock() classCreateListThread(Thread): defrun(self): self.entries=[] foriinrange(10): time.sleep(1) self.entries.append(i) lock.acquire() printself.entries lock.release() defuse_create_list_thread(): foriinrange(3): t=CreateListThread() t.start() use_create_list_thread()
今度は正しい結果が見られました。これは、あるスレッドが他のスレッドの内部変数 (非グローバル変数) を変更できないことを証明しています。
上記は Python のマルチスレッドです。その他の関連記事については、PHP 中国語 Web サイト (www.php.cn) に注目してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

このチュートリアルでは、システム全体の観点からPythonのエラー条件を処理する方法を学びます。エラー処理は設計の重要な側面であり、エンドユーザーまでずっと(ハードウェア)が最も低いレベル(場合によってはハードウェア)を超えます。 yの場合

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです
