1: 再帰的実装
式 f[n]=f[n-1]+f[n-2] を使用し、順番に再帰的に計算します。再帰終了条件は f[1]=1, f[2] です。 =1。
2: 配列の実装
空間計算量と時間計算量は両方とも 0(n) で、効率は平均的で、再帰よりも高速です。
3: Vector
時間計算量は 0(n) ですが、ベクトルが効率的かどうかはわかりません。リソースを占有します。
4: Queue
もちろん、時間計算量と空間計算量は配列よりも Queue の方が適していますが、これには queue が最適です
f(n) =f (n-1)+f(n-2)、f(n) がキューに追加された後、f(n) は f(n-1) と f(n-2) にのみ関連します。 n-2) デキューできます。
5: 反復実装
反復実装は、時間計算量が 0(n)、空間計算量が 0(1) で最も効率的です。
六:数式の実装
Baiduを検索していたら、フィボナッチ数列には数式があり、その数式を使用して計算できることを発見しました。
double型の精度が十分ではないため、プログラムで計算した結果には誤差が生じますが、式を展開して計算すると正しい結果になります。
完全な実装コードは次のとおりです:
#include "iostream" #include "queue" #include "cmath" using namespace std; int fib1(int index) //递归实现 { if(index<1) { return -1; } if(index==1 || index==2) return 1; return fib1(index-1)+fib1(index-2); } int fib2(int index) //数组实现 { if(index<1) { return -1; } if(index<3) { return 1; } int *a=new int[index]; a[0]=a[1]=1; for(int i=2;i<index;i++) a[i]=a[i-1]+a[i-2]; int m=a[index-1]; delete a; //释放内存空间 return m; } int fib3(int index) //借用vector<int>实现 { if(index<1) { return -1; } vector<int> a(2,1); //创建一个含有2个元素都为1的向量 a.reserve(3); for(int i=2;i<index;i++) { a.insert(a.begin(),a.at(0)+a.at(1)); a.pop_back(); } return a.at(0); } int fib4(int index) //队列实现 { if(index<1) { return -1; } queue<int>q; q.push(1); q.push(1); for(int i=2;i<index;i++) { q.push(q.front()+q.back()); q.pop(); } return q.back(); } int fib5(int n) //迭代实现 { int i,a=1,b=1,c=1; if(n<1) { return -1; } for(i=2;i<n;i++) { c=a+b; //辗转相加法(类似于求最大公约数的辗转相除法) a=b; b=c; } return c; } int fib6(int n) { double gh5=sqrt((double)5); return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5); } int main(void) { printf("%d\n",fib3(6)); system("pause"); return 0; }
7: 二部行列法
上記のように、フィボナッチ数列の任意の項目は行列累乗を使用して計算でき、n 乗はログ時間で計算できます。
コードは以下に掲載されています:
void multiply(int c[2][2],int a[2][2],int b[2][2],int mod) { int tmp[4]; tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0]; tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1]; tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0]; tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1]; c[0][0]=tmp[0]%mod; c[0][1]=tmp[1]%mod; c[1][0]=tmp[2]%mod; c[1][1]=tmp[3]%mod; }//计算矩阵乘法,c=a*b int fibonacci(int n,int mod)//mod表示数字太大时需要模的数 { if(n==0)return 0; else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1 int a[2][2]={{1,1},{1,0}}; int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵 int s; n-=2; while(n>0) { if(n%2 == 1) multiply(result,result,a,mod); multiply(a,a,a,mod); n /= 2; }//二分法求矩阵幂 s=(result[0][0]+result[0][1])%mod;//结果 return s; }
aのn乗関数を計算するための二分法を添付します。
int pow(int a,int n) { int ans=1; while(n) { if(n&1) ans*=a; a*=a; n>>=1; } return ans; }
フィボナッチ数列の一般項を求める 7 つの実装方法に関するその他の関連記事については、PHP 中国語 Web サイトに注目してください。