ホームページ Java &#&チュートリアル 一般的に使用される Java ソート アルゴリズムの詳細な説明

一般的に使用される Java ソート アルゴリズムの詳細な説明

Jan 18, 2017 pm 04:59 PM

1. 選択ソート (SelectSort)

基本原則: 指定されたレコードのセットについて、最初の比較の後、最小のレコードが取得され、そのレコードの位置が最初のレコードと交換されます。最初のレコード以外のレコードが含まれないレコードが再度比較され、最小のレコードが取得され、その位置が 2 番目のレコードと交換されます。このプロセスは、比較されるレコードが 1 つだけになるまで繰り返されます。

public class SelectSort {
 public static void selectSort(int[] array) {
 int i;
 int j;
 int temp;
 int flag;
 for (i = 0; i < array.length; i++) {
 temp = array[i];
 flag = i;
 for (j = i + 1; j < array.length; j++) {
 if (array[j] < temp) {
  temp = array[j];
  flag = j;
 }
 }
 if (flag != i) {
 array[flag] = array[i];
 array[i] = temp;
 }
 }
 }
 public static void main(String[] args) {
 int[] a = { 5, 1, 9, 6, 7, 2, 8, 4, 3 };
 selectSort(a);
 for (int i = 0; i < a.length; i++) {
 System.out.print(a[i] + " ");
 }
 }
}
ログイン後にコピー

2. 挿入ソート (InsertSort)

基本原則: 与えられたデータセットについて、最初のレコードは順序付きシーケンスを形成し、残りのレコードは順序なしシーケンスであると想定されます。次に、2 番目のレコードから開始して、最後のレコードが順序付けされたシーケンスに挿入されるまで、レコードのサイズに応じて、現在処理されているレコードがその前の順序付けされたシーケンスに挿入されます。

public class InsertSort {
 public static void insertSort(int[] a) {
 if (a != null) {
 for (int i = 1; i < a.length; i++) {
 int temp = a[i];
 int j = i;
 if (a[j - 1] > temp) {
  while (j >= 1 && a[j - 1] > temp) {
  a[j] = a[j - 1];
  j--;
  }
 }
 a[j] = temp;
 }
 }
 }
 public static void main(String[] args) {
 int[] a = { 5, 1, 7, 2, 8, 4, 3, 9, 6 };
 // int[] a =null;
 insertSort(a);
 for (int i = 0; i < a.length; i++) {
 System.out.print(a[i] + " ");
 }
 }
}
ログイン後にコピー

3. バブルソート (BubbleSort)

基本原則: 指定された n 個のレコードについて、最初のレコードから順に 2 つの隣接するレコードを比較します。 前のレコードが より大きい場合、後続のレコードについては、位置が交換されると、n 個のレコードのうち最大のレコードが n 番目の位置になり、最初の (n-1) 個のレコードに対して 2 回目の比較が実行されます。比較するレコードは 1 つだけ残っています。

public class BubbleSort {
 public static void bubbleSort(int array[]) {
 int temp = 0;
 int n = array.length;
 for (int i = n - 1; i >= 0; i--) {
 for (int j = 0; j < i; j++) {
 if (array[j] > array[j + 1]) {
  temp = array[j];
  array[j] = array[j + 1];
  array[j + 1] = temp;
 }
 }
 }
 }
 public static void main(String[] args) {
 int a[] = { 45, 1, 21, 17, 69, 99, 32 };
 bubbleSort(a);
 for (int i = 0; i < a.length; i++) {
 System.out.print(a[i] + " ");
 }
 }
}
ログイン後にコピー

4. マージソート (MergeSort)

基本原理: 再帰と分割統治技術を使用して、データシーケンスをますます小さい半分のサブテーブルに分割し、次に半分のサブテーブルをソートし、最後に再帰を使用する このメソッドは、ソートされたハーフサブリストを、ますます大きなソートされたシーケンスにマージします。指定されたレコードのセット (合計 n レコードと仮定) について、まず長さ 1 の隣接する 2 つのサブシーケンスをすべてマージして、長さ 2 または 1 の n/2 (切り上げ) の順序付けされたサブシーケンスを取得します。次に、それらを 2 つずつマージします。 、順序付けられたシーケンスが得られるまでこのプロセスを繰り返します。

public class MergeSort {
 public static void merge(int array[], int p, int q, int r) {
 int i, j, k, n1, n2;
 n1 = q - p + 1;
 n2 = r - q;
 int[] L = new int[n1];
 int[] R = new int[n2];
 for (i = 0, k = p; i < n1; i++, k++)
 L[i] = array[k];
 for (i = 0, k = q + 1; i < n2; i++, k++)
 R[i] = array[k];
 for (k = p, i = 0, j = 0; i < n1 && j < n2; k++) {
 if (L[i] > R[j]) {
 array[k] = L[i];
 i++;
 } else {
 array[k] = R[j];
 j++;
 }
 }
 if (i < n1) {
 for (j = i; j < n1; j++, k++)
 array[k] = L[j];
 }
 if (j < n2) {
 for (i = j; i < n2; i++, k++) {
 array[k] = R[i];
 }
 }
 }
 public static void mergeSort(int array[], int p, int r) {
 if (p < r) {
 int q = (p + r) / 2;
 mergeSort(array, p, q);
 mergeSort(array, q + 1, r);
 merge(array, p, q, r);
 }
 }
 public static void main(String[] args) {
 int a[] = { 5, 4, 9, 8, 7, 6, 0, 1, 3, 2 };
 mergeSort(a, 0, a.length - 1);
 for (int j = 0; j < a.length; j++) {
 System.out.print(a[j] + " ");
 }
 }
}
ログイン後にコピー

5. クイックソート (QuickSort)

基本原理: 指定されたレコードのセットについて、ソートを 1 回行った後、元のシーケンスが 2 つの部分に分割され、前の部分のすべてのレコードが小さくなります。 1 つの部分のレコードはすべて小さいため、前後の 2 つの部分のレコードがすぐにソートされ、シーケンス内のすべてのレコードがソートされるまでプロセスが再帰的に行われます。

public class QuickSort {
 public static void sort(int array[], int low, int high) {
 int i, j;
 int index;
 if (low >= high)
 return;
 i = low;
 j = high;
 index = array[i];
 while (i < j) {
 while (i < j && index <= array[j])
 j--;
 if (i < j)
 array[i++] = array[j];
 while (i < j && index > array[i])
 i++;
 if (i < j)
 array[j--] = array[i];
 }
 array[i] = index;
 sort(array, low, i - 1);
 sort(array, i + 1, high);
 }
 public static void quickSort(int array[]) {
 sort(array, 0, array.length - 1);
 }
 public static void main(String[] args) {
 int a[] = { 5, 8, 4, 6, 7, 1, 3, 9, 2 };
 quickSort(a);
 for (int i = 0; i < a.length; i++) {
 System.out.print(a[i] + " ");
 }
 }
}
ログイン後にコピー

6. シェルソート

基本原理: まず、ソート対象の配列要素を複数のサブシーケンスに分割して、各サブシーケンスの要素数が相対的に減り、次に各サブシーケンスに対して個別の操作を実行します。挿入ソートでは、ソート対象のシーケンス全体が「基本的に順序付け」された後、最後にすべての要素に対して直接挿入ソートが実行されます。

public class ShellSort {
 public static void shellSort(int[] a) {
 int len = a.length;
 int i, j;
 int h;
 int temp;
 for (h = len / 2; h > 0; h = h / 2) {
 for (i = h; i < len; i++) {
 temp = a[i];
 for (j = i - h; j >= 0; j -= h) {
  if (temp < a[j]) {
  a[j + h] = a[j];
  } else
  break;
 }
 a[j + h] = temp;
 }
 }
 }
 public static void main(String[] args) {
 int a[] = { 5, 4, 9, 8, 7, 6, 0, 1, 3, 2 };
 shellSort(a);
 for (int j = 0; j < a.length; j++) {
 System.out.print(a[j] + " ");
 }
 }
}
ログイン後にコピー

7. 最小ヒープソート (MinHeapSort)

基本原則: 与えられた n 個のレコードについて、最初はこれらのレコードを順次格納されたバイナリ ツリーとして扱い、次にそれを小さな上部ヒープに調整し、その後ヒープの最後の要素をヒープの最上位の要素と交換すると、ヒープの最後の要素が最小レコードとなり、最初の (n-1) 個の要素が小さな最上位のヒープに再調整され、次にその最上位の要素になります。現在のヒープの最後の要素と交換した後、調整されたヒープに 1 つの要素だけが残るまでこのプロセスを繰り返します。この時点で、順序付けられたシーケンスが得られます。得られた。

public class MinHeapSort {
 public static void adjustMinHeap(int[] a, int pos, int len) {
 int temp;
 int child;
 for (temp = a[pos]; 2 * pos + 1 <= len; pos = child) {
 child = 2 * pos + 1;
 if (child < len && a[child] > a[child + 1])
 child++;
 if (a[child] < temp)
 a[pos] = a[child];
 else
 break;
 }
 a[pos] = temp;
 }
 public static void myMinHeapSort(int[] array) {
 int i;
 int len = array.length;
 for (i = len / 2 - 1; i >= 0; i--) {
 adjustMinHeap(array, i, len - 1);
 }
 for (i = len - 1; i >= 0; i--) {
 int tmp = array[0];
 array[0] = array[i];
 array[i] = tmp;
 adjustMinHeap(array, 0, i - 1);
 }
 }
 public static void main(String[] args) {
 int[] a = { 5, 4, 9, 8, 7, 6, 0, 1, 3, 2 };
 myMinHeapSort(a);
 for (int i = 0; i < a.length; i++) {
 System.out.print(a[i] + " ");
 }
 }
}
ログイン後にコピー

以上がこの記事の内容です、この記事の内容が皆様の勉強や仕事に少しでもお役に立てれば幸いです。また、PHP中国語サイトも応援させていただきます。

一般的に使用される Java ソート アルゴリズムの詳細については、PHP 中国語 Web サイトに注目してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか? カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか? Mar 17, 2025 pm 05:44 PM

この記事では、カフェインとグアバキャッシュを使用してJavaでマルチレベルキャッシュを実装してアプリケーションのパフォーマンスを向上させています。セットアップ、統合、パフォーマンスの利点をカバーし、構成と立ち退きポリシー管理Best Pra

Javaで機能的なプログラミング技術を実装するにはどうすればよいですか? Javaで機能的なプログラミング技術を実装するにはどうすればよいですか? Mar 11, 2025 pm 05:51 PM

この記事では、Lambda式、Streams API、メソッド参照、およびオプションを使用して、機能プログラミングをJavaに統合することを調べます。 それは、簡潔さと不変性を通じてコードの読みやすさと保守性の改善などの利点を強調しています

Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか? Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか? Mar 17, 2025 pm 05:35 PM

Javaのクラスロードには、ブートストラップ、拡張機能、およびアプリケーションクラスローダーを備えた階層システムを使用して、クラスの読み込み、リンク、および初期化が含まれます。親の委任モデルは、コアクラスが最初にロードされ、カスタムクラスのLOAに影響を与えることを保証します

キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか? キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか? Mar 17, 2025 pm 05:43 PM

この記事では、キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPAを使用することについて説明します。潜在的な落とし穴を強調しながら、パフォーマンスを最適化するためのセットアップ、エンティティマッピング、およびベストプラクティスをカバーしています。[159文字]

高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか? 高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか? Mar 17, 2025 pm 05:46 PM

この記事では、Javaプロジェクト管理、自動化の構築、依存関係の解像度にMavenとGradleを使用して、アプローチと最適化戦略を比較して説明します。

非ブロッキングI/OにJavaのNIO(新しい入出力)APIを使用するにはどうすればよいですか? 非ブロッキングI/OにJavaのNIO(新しい入出力)APIを使用するにはどうすればよいですか? Mar 11, 2025 pm 05:51 PM

この記事では、単一のスレッドで複数の接続を効率的に処理するためにセレクターとチャネルを使用して、非ブロッキングI/O用のJavaのNIO APIについて説明します。 プロセス、利点(スケーラビリティ、パフォーマンス)、および潜在的な落とし穴(複雑さ、

適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか? 適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか? Mar 17, 2025 pm 05:45 PM

この記事では、MavenやGradleなどのツールを使用して、適切なバージョン化と依存関係管理を使用して、カスタムJavaライブラリ(JARファイル)の作成と使用について説明します。

ネットワーク通信にJavaのソケットAPIを使用するにはどうすればよいですか? ネットワーク通信にJavaのソケットAPIを使用するにはどうすればよいですか? Mar 11, 2025 pm 05:53 PM

この記事では、ネットワーク通信のためのJavaのソケットAPI、クライアントサーバーのセットアップ、データ処理、リソース管理、エラー処理、セキュリティなどの重要な考慮事項をカバーしています。 また、パフォーマンスの最適化手法も調査します

See all articles