ホームページ Java &#&チュートリアル Java でのラムダ式のクイック スタート

Java でのラムダ式のクイック スタート

Jan 23, 2017 pm 01:40 PM

Lambda の概要

Lambda 式は Java SE 8 の重要な新機能です。ラムダ式を使用すると、関数インターフェイスを式で置き換えることができます。ラムダ式はメソッドとまったく同じで、通常のパラメーター リストと、これらのパラメーターを使用する本体 (式またはコード ブロックの本体) を提供します。

ラムダ式はコレクション ライブラリも強化します。 Java SE 8 では、コレクション データに対するバッチ操作のための 2 つのパッケージ (java.util.function パッケージと java.util.stream パッケージ) が追加されています。 ストリームはイテレータに似ていますが、多くの追加機能があります。 全体として、ラムダ式とストリームは、ジェネリックスとアノテーションの追加以来、Java 言語に加えられた最大の変更点です。

ラムダ式は本質的に匿名メソッドであり、その基礎となるメソッドは、invokedynamic 命令を通じて匿名クラスを生成することによって実装されます。より単純な構文と記述スタイルが提供され、関数インターフェイスを式に置き換えることができます。 Lambda を使用するとコードがより簡潔になるため、この考え方はまったく回避できるという意見もありますが、重要なのは、Lambda が Java にクロージャをもたらすということです。 Lambda によるコレクションのサポートのおかげで、マルチコアプロセッサ条件下で Lambda を介したコレクション走査のパフォーマンスが大幅に向上します。さらに、データフロー方式でコレクションを処理できることは非常に魅力的です。

Lambda 構文

Lambda の構文は非常に単純で、次の構造に似ています:

(parameters) -> expression
ログイン後にコピー

または

(parameters) -> { statements; }
ログイン後にコピー

ラムダ式は 3 つの部分で構成されます:

1. パラメータ: 仮パラメータ リストに似ています。メソッド内、ここではパラメータは関数インターフェイス内のパラメータです。ここでのパラメータの型は、明示的に宣言することも、宣言せずに JVM によって暗黙的に推論することもできます。また、推論される型が 1 つだけの場合は、括弧を省略できます。

2. ->: 「使用されている」と理解できます

3. メソッド本体: 式またはコード ブロックにすることができ、関数インターフェイスでのメソッドの実装です。コード ブロックは、値を返すことも、何も返さないこともできます。このコード ブロックは、メソッドのメソッド本体に相当します。式の場合は、値を返すことも、何も返さないこともできます。

次の例で説明します:

//示例1:不需要接受参数,直接返回10
()->10
 
//示例2:接受两个int类型的参数,并返回这两个参数相加的和
(int x,int y)->x+y;
 
//示例2:接受x,y两个参数,该参数的类型由JVM根据上下文推断出来,并返回两个参数的和
(x,y)->x+y;
 
//示例3:接受一个字符串,并将该字符串打印到控制到,不反回结果
(String name)->System.out.println(name);
 
//示例4:接受一个推断类型的参数name,并将该字符串打印到控制台
name->System.out.println(name);
 
//示例5:接受两个String类型参数,并分别输出,不反回
(String name,String sex)->{System.out.println(name);System.out.println(sex)}
 
//示例6:接受一个参数x,并返回该该参数的两倍
x->2*x
ログイン後にコピー

Lambda はどこで使用されますか?

[関数型インターフェイス][1] では、Lambda 式のターゲット タイプが関数型インターフェイスであることがわかります。特定の機能インターフェイスを通じて特定の型に一致する必要があります。したがって、ラムダ式は、そのターゲット型と一致する任意の場所で使用できます。ラムダ式は、関数インターフェイスの抽象関数の記述と同じパラメータ型を持つ必要があり、その戻り値の型も、抽象関数の戻り値の型と互換性がある必要があります。スローされる例外も関数の記述範囲に限定されます。

次に、カスタム関数型インターフェイスの例を見てみましょう:

@FunctionalInterface
 interface Converter<F, T>{
 
   T convert(F from);
 
}
ログイン後にコピー

まず、従来の方法でインターフェイスを使用します:

Converter<String ,Integer> converter=new Converter<String, Integer>() {
     @Override
     public Integer convert(String from) {
       return Integer.valueOf(from);
     }
   };
 
   Integer result = converter.convert("200");
   System.out.println(result);
ログイン後にコピー

明らかに問題はありません。その後、Lambda がステージに登場した瞬間に、Lambda を使用してConverter インターフェイスを実装します:

Converter<String ,Integer> converter=(param) -> Integer.valueOf(param);
    Integer result = converter.convert("101");
    System.out.println(result);
ログイン後にコピー

上記の例を通して、Lambda の使用法を簡単に理解できたと思います。 次に、一般的に使用される Runnable を使用して説明します。

以前はコードを記述していました。このように:

new Thread(new Runnable() {
      @Override
      public void run() {
        System.out.println("hello lambda");
      }
    }).start();
ログイン後にコピー

場合によっては、多数の匿名クラスによってコードが乱雑に見えることがあります。これで、Lambda を使用して簡潔にすることができます:

new Thread(() -> System.out.println("hello lambda")).start();
ログイン後にコピー

メソッドリファレンス

メソッドリファレンスは、Lambda 式を記述する簡略化された方法です。参照されるメソッドは、実際には Lambda 式のメソッド本体の実装です。その構文構造は次のとおりです。

ObjectRef::methodName
ログイン後にコピー

左側はクラス名またはインスタンス名、中央はメソッド参照記号「::」です。右側は対応するメソッド名です。

メソッド参照は 3 つのカテゴリに分類されます:

1. 静的メソッド参照

場合によっては、次のようなコードを記述することがあります:

public class ReferenceTest {
  public static void main(String[] args) {
    Converter<String ,Integer> converter=new Converter<String, Integer>() {
      @Override
      public Integer convert(String from) {
        return ReferenceTest.String2Int(from);
      }
    };
    converter.convert("120");
 
  }
 
  @FunctionalInterface
  interface Converter<F,T>{
    T convert(F from);
  }
 
  static int String2Int(String from) {
    return Integer.valueOf(from);
  }
}
ログイン後にコピー

この時点で静的参照を使用する場合、コードは次のようになります。より簡潔に: re

Converter<String, Integer> converter = ReferenceTest::String2Int;
converter.convert("120");
ログイン後にコピー
E

2. メソッドの引用例

次のようなコードも書くことができます:

public class ReferenceTest {
  public static void main(String[] args) {
 
    Converter<String, Integer> converter = new Converter<String, Integer>() {
      @Override
      public Integer convert(String from) {
        return new Helper().String2Int(from);
      }
    };
    converter.convert("120");
  }
 
  @FunctionalInterface
  interface Converter<F, T> {
    T convert(F from);
  }
 
  static class Helper {
    public int String2Int(String from) {
      return Integer.valueOf(from);
    }
  }
}
ログイン後にコピー

さらに詳しくさらに詳しく

3. コンストラクター メソッドのリファレンス

次に、コンストラクター メソッドのリファレンスを説明します。まず、親クラス Animal を定義します:

Helper helper = new Helper();
Converter<String, Integer> converter = helper::String2Int;
converter.convert("120");
ログイン後にコピー


次に、Animal の 2 つのサブクラスを定義します: Dog、Bird

class Animal{
  private String name;
  private int age;
 
  public Animal(String name, int age) {
    this.name = name;
    this.age = age;
  }
 
  public void behavior(){
 
  }
}
ログイン後にコピー

次に、ファクトリ インターフェイスを定義します:

public class Bird extends Animal {
 
  public Bird(String name, int age) {
    super(name, age);
  }
 
  @Override
  public void behavior() {
    System.out.println("fly");
  }
}
 
class Dog extends Animal {
 
  public Dog(String name, int age) {
    super(name, age);
  }
 
  @Override
  public void behavior() {
    System.out.println("run");
  }
}
ログイン後にコピー

次に、 Dog クラスと Bird クラスのオブジェクトを作成するには、引き続き従来の方法を使用します:

interface Factory<T extends Animal> {
  T create(String name, int age);
}
ログイン後にコピー

🎜 2 つのオブジェクトを作成するためだけに 10 以上のコードを書きました。次に、コンストラクター参照を使用してみましょう: 🎜
Factory factory=new Factory() {
  @Override
  public Animal create(String name, int age) {
    return new Dog(name,age);
  }
};
factory.create("alias", 3);
factory=new Factory() {
  @Override
  public Animal create(String name, int age) {
    return new Bird(name,age);
  }
};
factory.create("smook", 2);
ログイン後にコピー
🎜 🎜🎜🎜🎜これ。コードがすっきりときれいに見えるようにするためです。 Dog::new を通じてオブジェクトを構築する場合、Factory.create 関数のシグネチャによって対応するコンストラクターが選択されます。 🎜🎜Lambdaのドメインとアクセス制限🎜

域即作用域,Lambda表达式中的参数列表中的参数在该Lambda表达式范围内(域)有效。在作用Lambda表达式内,可以访问外部的变量:局部变量、类变量和静态变量,但操作受限程度不一。

访问局部变量

在Lambda表达式外部的局部变量会被JVM隐式的编译成final类型,因此只能访问外而不能修改。

public class ReferenceTest {
  public static void main(String[] args) {
 
    int n = 3;
    Calculate calculate = param -> {
      //n=10; 编译错误
      return n + param;
    };
    calculate.calculate(10);
  }
 
  @FunctionalInterface
  interface Calculate {
    int calculate(int value);
  }
 
}
ログイン後にコピー

访问静态变量和成员变量

在Lambda表达式内部,对静态变量和成员变量可读可写。

public class ReferenceTest {
  public int count = 1;
  public static int num = 2;
 
  public void test() {
    Calculate calculate = param -> {
      num = 10;//修改静态变量
      count = 3;//修改成员变量
      return n + param;
    };
    calculate.calculate(10);
  }
 
  public static void main(String[] args) {
 
  }
 
  @FunctionalInterface
  interface Calculate {
    int calculate(int value);
  }
 
}
ログイン後にコピー


Lambda不能访问函数接口的默认方法

java8增强了接口,其中包括接口可添加default关键词定义的默认方法,这里我们需要注意,Lambda表达式内部不支持访问默认方法。

Lambda实践

在[函数式接口][2]一节中,我们提到java.util.function包中内置许多函数式接口,现在将对常用的函数式接口做说明。

Predicate接口

输入一个参数,并返回一个Boolean值,其中内置许多用于逻辑判断的默认方法:

@Test
public void predicateTest() {
  Predicate<String> predicate = (s) -> s.length() > 0;
  boolean test = predicate.test("test");
  System.out.println("字符串长度大于0:" + test);
 
  test = predicate.test("");
  System.out.println("字符串长度大于0:" + test);
 
  test = predicate.negate().test("");
  System.out.println("字符串长度小于0:" + test);
 
  Predicate<Object> pre = Objects::nonNull;
  Object ob = null;
  test = pre.test(ob);
  System.out.println("对象不为空:" + test);
  ob = new Object();
  test = pre.test(ob);
  System.out.println("对象不为空:" + test);
}
ログイン後にコピー


Function接口

接收一个参数,返回单一的结果,默认的方法(andThen)可将多个函数串在一起,形成复合Funtion(有输入,有输出)结果,

@Test
public void functionTest() {
  Function<String, Integer> toInteger = Integer::valueOf;
  //toInteger的执行结果作为第二个backToString的输入
  Function<String, String> backToString = toInteger.andThen(String::valueOf);
  String result = backToString.apply("1234");
  System.out.println(result);
 
  Function<Integer, Integer> add = (i) -> {
    System.out.println("frist input:" + i);
    return i * 2;
  };
  Function<Integer, Integer> zero = add.andThen((i) -> {
    System.out.println("second input:" + i);
    return i * 0;
  });
 
  Integer res = zero.apply(8);
  System.out.println(res);
}
ログイン後にコピー


Supplier接口

返回一个给定类型的结果,与Function不同的是,Supplier不需要接受参数(供应者,有输出无输入)

@Test
public void supplierTest() {
  Supplier<String> supplier = () -> "special type value";
  String s = supplier.get();
  System.out.println(s);
}
ログイン後にコピー

Consumer接口

代表了在单一的输入参数上需要进行的操作。和Function不同的是,Consumer没有返回值(消费者,有输入,无输出)

@Test
public void consumerTest() {
  Consumer<Integer> add5 = (p) -> {
    System.out.println("old value:" + p);
    p = p + 5;
    System.out.println("new value:" + p);
  };
  add5.accept(10);
}
ログイン後にコピー

以上四个接口的用法代表了java.util.function包中四种类型,理解这四个函数式接口之后,其他的接口也就容易理解了,现在我们来做一下简单的总结:

Predicate用来逻辑判断,Function用在有输入有输出的地方,Supplier用在无输入,有输出的地方,而Consumer用在有输入,无输出的地方。你大可通过其名称的含义来获知其使用场景。

Stream

Lambda为java8带了闭包,这一特性在集合操作中尤为重要:java8中支持对集合对象的stream进行函数式操作,此外,stream api也被集成进了collection api,允许对集合对象进行批量操作。

下面我们来认识Stream。

Stream表示数据流,它没有数据结构,本身也不存储元素,其操作也不会改变源Stream,而是生成新Stream.作为一种操作数据的接口,它提供了过滤、排序、映射、规约等多种操作方法,这些方法按照返回类型被分为两类:凡是返回Stream类型的方法,称之为中间方法(中间操作),其余的都是完结方法(完结操作)。完结方法返回一个某种类型的值,而中间方法则返回新的Stream。中间方法的调用通常是链式的,该过程会形成一个管道,当完结方法被调用时会导致立即从管道中消费值,这里我们要记住:Stream的操作尽可能以“延迟”的方式运行,也就是我们常说的“懒操作”,这样有助于减少资源占用,提高性能。对于所有的中间操作(除sorted外)都是运行在延迟模式下。

Stream不但提供了强大的数据操作能力,更重要的是Stream既支持串行也支持并行,并行使得Stream在多核处理器上有着更好的性能。

Stream的使用过程有着固定的模式:

1、创建Stream

2、通过中间操作,对原始Stream进行“变化”并生成新的Stream

3、使用完结操作,生成最终结果

也就是

创建——>变化——>完结

Stream的创建

对于集合来说,可以通过调用集合的stream()或者parallelStream()来创建,另外这两个方法也在Collection接口中实现了。对于数组来说,可以通过Stream的静态方法of(T … values)来创建,另外,Arrays也提供了有关stream的支持。

除了以上基于集合或者数组来创建Stream,也可以通过Steam.empty()创建空的Stream,或者利用Stream的generate()来创建无穷的Stream。

下面我们以串行Stream为例,分别说明Stream几种常用的中间方法和完结方法。首先创建一个List集合:

List<String> lists=new ArrayList<String >();
    lists.add("a1");
    lists.add("a2");
    lists.add("b1");
    lists.add("b2");
    lists.add("b3");
    lists.add("o1");
ログイン後にコピー

中间方法

过滤器(Filter)

结合Predicate接口,Filter对流对象中的所有元素进行过滤,该操作是一个中间操作,这意味着你可以在操作返回结果的基础上进行其他操作。

public static void streamFilterTest() {
  lists.stream().filter((s -> s.startsWith("a"))).forEach(System.out::println);
 
  //等价于以上操作
  Predicate<String> predicate = (s) -> s.startsWith("a");
  lists.stream().filter(predicate).forEach(System.out::println);
 
  //连续过滤
  Predicate<String> predicate1 = (s -> s.endsWith("1"));
  lists.stream().filter(predicate).filter(predicate1).forEach(System.out::println);
}
ログイン後にコピー

排序(Sorted)

结合Comparator接口,该操作返回一个排序过后的流的视图,原始流的顺序不会改变。通过Comparator来指定排序规则,默认是按照自然顺序排序。

public static void streamSortedTest() {
  System.out.println("默认Comparator");
  lists.stream().sorted().filter((s -> s.startsWith("a"))).forEach(System.out::println);
 
  System.out.println("自定义Comparator");
  lists.stream().sorted((p1, p2) -> p2.compareTo(p1)).filter((s -> s.startsWith("a"))).forEach(System.out::println);
 
}
ログイン後にコピー

映射(Map)

结合Function接口,该操作能将流对象中的每个元素映射为另一种元素,实现元素类型的转换。

public static void streamMapTest() {
  lists.stream().map(String::toUpperCase).sorted((a, b) -> b.compareTo(a)).forEach(System.out::println);
 
  System.out.println("自定义映射规则");
  Function<String, String> function = (p) -> {
    return p + ".txt";
  };
  lists.stream().map(String::toUpperCase).map(function).sorted((a, b) -> b.compareTo(a)).forEach(System.out::println);
 
}
ログイン後にコピー


在上面简单介绍了三种常用的操作,这三种操作极大简化了集合的处理。接下来,介绍几种完结方法:

完结方法

“变换”过程之后,需要获取结果,即完成操作。下面我们来看相关的操作:

匹配(Match)

用来判断某个predicate是否和流对象相匹配,最终返回Boolean类型结果,例如:

public static void streamMatchTest() {
  //流对象中只要有一个元素匹配就返回true
  boolean anyStartWithA = lists.stream().anyMatch((s -> s.startsWith("a")));
  System.out.println(anyStartWithA);
  //流对象中每个元素都匹配就返回true
  boolean allStartWithA
      = lists.stream().allMatch((s -> s.startsWith("a")));
  System.out.println(allStartWithA);
}
ログイン後にコピー

收集(Collect)

在对经过变换之后,我们将变换的Stream的元素收集,比如将这些元素存至集合中,此时便可以使用Stream提供的collect方法,例如:

public static void streamCollectTest() {
  List<String> list = lists.stream().filter((p) -> p.startsWith("a")).sorted().collect(Collectors.toList());
  System.out.println(list);
 
}
ログイン後にコピー

计数(Count)

类似sql的count,用来统计流中元素的总数,例如:

public static void streamCountTest() {
  long count = lists.stream().filter((s -> s.startsWith("a"))).count();
  System.out.println(count);
}
ログイン後にコピー

规约(Reduce)

reduce方法允许我们用自己的方式去计算元素或者将一个Stream中的元素以某种规律关联,例如:

public static void streamReduceTest() {
  Optional<String> optional = lists.stream().sorted().reduce((s1, s2) -> {
    System.out.println(s1 + "|" + s2);
    return s1 + "|" + s2;
  });
}
ログイン後にコピー

执行结果如下:

a1|a2
a1|a2|b1
a1|a2|b1|b2
a1|a2|b1|b2|b3
a1|a2|b1|b2|b3|o1
ログイン後にコピー

并行Stream VS 串行Stream

到目前我们已经将常用的中间操作和完结操作介绍完了。当然所有的的示例都是基于串行Stream。接下来介绍重点戏——并行Stream(parallel Stream)。并行Stream基于Fork-join并行分解框架实现,将大数据集合切分为多个小数据结合交给不同的线程去处理,这样在多核处理情况下,性能会得到很大的提高。这和MapReduce的设计理念一致:大任务化小,小任务再分配到不同的机器执行。只不过这里的小任务是交给不同的处理器。

通过parallelStream()创建并行Stream。为了验证并行Stream是否真的能提高性能,我们执行以下测试代码:

首先创建一个较大的集合:

List<String> bigLists = new ArrayList<>();
  for (int i = 0; i < 10000000; i++) {
    UUID uuid = UUID.randomUUID();
    bigLists.add(uuid.toString());
  }
ログイン後にコピー

测试串行流下排序所用的时间:

private static void notParallelStreamSortedTest(List<String> bigLists) {
  long startTime = System.nanoTime();
  long count = bigLists.stream().sorted().count();
  long endTime = System.nanoTime();
  long millis = TimeUnit.NANOSECONDS.toMillis(endTime - startTime);
  System.out.println(System.out.printf("串行排序: %d ms", millis));
 
}
ログイン後にコピー

测试并行流下排序所用的时间:

private static void parallelStreamSortedTest(List<String> bigLists) {
  long startTime = System.nanoTime();
  long count = bigLists.parallelStream().sorted().count();
  long endTime = System.nanoTime();
  long millis = TimeUnit.NANOSECONDS.toMillis(endTime - startTime);
  System.out.println(System.out.printf("并行排序: %d ms", millis));
 
}
ログイン後にコピー

结果如下:

串行排序: 13336 ms
并行排序: 6755 ms

看到这里,我们确实发现性能提高了约么50%,你也可能会想以后都用parallel Stream不久行了么?实则不然,如果你现在还是单核处理器,而数据量又不算很大的情况下,串行流仍然是这种不错的选择。你也会发现在某些情况,串行流的性能反而更好,至于具体的使用,需要你根据实际场景先测试后再决定。

懒操作

上面我们谈到Stream尽可能以延迟的方式运行,这里通过创建一个无穷大的Stream来说明:

首先通过Stream的generate方法来一个自然数序列,然后通过map变换Stream:

//递增序列
class NatureSeq implements Supplier<Long> {
   long value = 0;
 
   @Override
   public Long get() {
     value++;
     return value;
   }
 }
 
public void streamCreateTest() {
   Stream<Long> stream = Stream.generate(new NatureSeq());
   System.out.println("元素个数:"+stream.map((param) -> {
     return param;
   }).limit(1000).count());
 
 }
ログイン後にコピー

   

执行结果为:

       元素个数:1000

我们发现开始时对这个无穷大的Stream做任何中间操作(如:filter,map等,但sorted不行)都是可以的,也就是对Stream进行中间操作并生存一个新的Stream的过程并非立刻生效的(不然此例中的map操作会永远的运行下去,被阻塞住),当遇到完结方法时stream才开始计算。通过limit()方法,把这个无穷的Stream转为有穷的Stream。

总结

以上就是Java Lambda快速入门详解的全部内容,看完本文后大家是不是对Java Lambda有了更深的了解,希望本文对大家学习Java Lambda能有所帮助。

更多快速入门Java中的Lambda表达式相关文章请关注PHP中文网!

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか? Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか? Mar 17, 2025 pm 05:35 PM

Javaのクラスロードには、ブートストラップ、拡張機能、およびアプリケーションクラスローダーを備えた階層システムを使用して、クラスの読み込み、リンク、および初期化が含まれます。親の委任モデルは、コアクラスが最初にロードされ、カスタムクラスのLOAに影響を与えることを保証します

カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか? カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか? Mar 17, 2025 pm 05:44 PM

この記事では、カフェインとグアバキャッシュを使用してJavaでマルチレベルキャッシュを実装してアプリケーションのパフォーマンスを向上させています。セットアップ、統合、パフォーマンスの利点をカバーし、構成と立ち退きポリシー管理Best Pra

キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか? キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか? Mar 17, 2025 pm 05:43 PM

この記事では、キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPAを使用することについて説明します。潜在的な落とし穴を強調しながら、パフォーマンスを最適化するためのセットアップ、エンティティマッピング、およびベストプラクティスをカバーしています。[159文字]

高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか? 高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか? Mar 17, 2025 pm 05:46 PM

この記事では、Javaプロジェクト管理、自動化の構築、依存関係の解像度にMavenとGradleを使用して、アプローチと最適化戦略を比較して説明します。

適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか? 適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか? Mar 17, 2025 pm 05:45 PM

この記事では、MavenやGradleなどのツールを使用して、適切なバージョン化と依存関係管理を使用して、カスタムJavaライブラリ(JARファイル)の作成と使用について説明します。

See all articles