Python でのオペレーター モジュールのオペレーターの使用法
演算子モジュールは、Python の組み込み演算子関数インターフェイスであり、算術演算および比較組み込み演算のためのいくつかの関数を定義します。演算子モジュールは C で実装されているため、実行速度は Python コードよりも高速です。
論理演算
from operator import * a = [1, 2, 3] b = a print 'a =', a print 'b =', b print print 'not_(a) :', not_(a) print 'truth(a) :', truth(a) print 'is_(a, b) :', is_(a, b) print 'is_not(a, b) :', is_not(a, b)
印刷結果:
a = [1, 2, 3] b = [1, 2, 3] not_(a) : False truth(a) : True is_(a, b) : True is_not(a, b): False
結果から、演算子の一部の演算機能が元の演算と同じであることがわかります。
比較演算子
演算子は、豊富な比較演算を提供します。
a = 3 b = 5 print 'a =', a print 'b =', b print for func in (lt, le, eq, ne, ge, gt): print '{0}(a, b):'.format(func.__name__), func(a, b)
結果の印刷
a = 3 b = 5 lt(a, b): True le(a, b): True eq(a, b): False ne(a, b): True ge(a, b): False gt(a, b): False
これらの関数は、<、<=、==、>=、および > の式構文と同等です。
算術演算子
数値を扱うための算術演算子もサポートされています。
a, b, c, d = -1, 2, -3, 4 print 'a =', a print 'b =', b print 'c =', c print 'd =', d print '\nPositive/Negative:' print 'abs(a):', abs(a) print 'neg(a):', neg(a) print 'neg(b):', neg(b) print 'pos(a):', pos(a) print 'pos(b):', pos(b)
印刷結果
a = -1 b = 2 c = -3 d = 4 Positive/Negative: abs(a): 1 neg(a): 1 neg(b): -2 pos(a): -1 pos(b): 2
absは絶対値を返し、negは(-obj)を返し、posは(+obj)を返します。
a = -2 b = 5.0 print 'a =', a print 'b =', b print '\nArithmetic' print 'add(a, b) :', add(a, b) print 'p(a, b) :', p(a, b) print 'floorp(a, b) :', floorp(a, b) print 'mod(a, b) :', mod(a, b) print 'mul(a, b) :', mul(a, b) print 'pow(a, b) :', pow(a, b) print 'sub(a, b) :', sub(a, b) print 'truep(a, b) :', truep(a, b)
結果を印刷します
a = -2 b = 5.0 Arithmetic add(a, b) : 3.0 p(a, b) : -0.4 floorp(a, b) : -1.0 mod(a, b) : 3.0 # 查看负数取模 mul(a, b) : -10.0 pow(a, b) : -32.0 sub(a, b) : -7.0 truep(a, b) : -0.4
modは係数を取ることを意味し、mulは乗算を意味し、powはべき乗を意味し、subは減算を意味します
a = 2 b = 6 print 'a =', a print 'b =', b print '\nBitwise:' print 'and_(a, b) :', and_(a, b) print 'invert(a) :', invert(a) print 'lshift(a, b) :', lshift(a, b) print 'or_(a, b) :', or_(a, b) print 'rshift(a, b) :', rshift(a, b) print 'xor(a, b) :', xor(a, b)
結果を印刷する
りー
and はビット単位の AND を意味し、invert は否定演算を意味し、lshift は左シフトまたはビット単位の OR を意味し、rshift は右シフトを意味し、xor はビット単位の XOR を意味します。
インプレース演算子
は、z = iadd(x, y)などの他の変数にコピーされる場合、x += yはx = iadd(x, y)と同等です。 z = x と同等です。
a = 2 b = 6 Bitwise: and_(a, b) : 2 invert(a) : -3 lshift(a, b) : 128 or_(a, b) : 6 rshift(a, b) : 0 xor(a, b) : 4
属性と要素の取得メソッド
演算子モジュールの最も特殊な機能の 1 つは、取得メソッドの概念であり、オブジェクトの属性またはシーケンスを取得するために実行時に構築されるコールバック オブジェクトです。 content、get メソッドは、イテレーターやジェネレーター シーケンスを処理する場合に特に便利で、これらによって導入されるオーバーヘッドにより、ラムダ関数や Python 関数のオーバーヘッドが大幅に削減されます。
a = 3 b = 4 c = [1, 2] d = ['a', 'b'] print 'a =', a print 'b =', b print 'c =', c print 'd =', d print a = iadd(a, b) print 'a = iadd(a, b) =>', a print c = iconcat(c, d) print 'c = iconcat(c, d) =>', c
結果:
from operator import * class MyObj(object): def __init__(self, arg): super(MyObj, self).__init__() self.arg = arg def __repr__(self): return 'MyObj(%s)' % self.arg objs = [MyObj(i) for i in xrange(5)] print "Object:", objs g = attrgetter("arg") vals = [g(i) for i in objs] print "arg values:", vals objs.reverse() print "reversed:", objs print "sorted:", sorted(objs, key=g)
属性の取得方法は
Object: [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)] arg values: [0, 1, 2, 3, 4] reversed: [MyObj(4), MyObj(3), MyObj(2), MyObj(1), MyObj(0)] sorted: [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
要素の取得方法は
lambda x, n='attrname':getattr(x,nz)
結果は次のとおりです。
lambda x,y=5:x[y]
シーケンスに加えて、要素の取得メソッドはマッピングでも機能します。
演算子とカスタムクラスの結合
演算子モジュール内の関数は、対応する操作の標準 Python インターフェイスを通じて動作するため、組み込み型だけでなくユーザー定義型でも動作します。
from operator import * l = [dict(val=-1*i) for i in xrange(4)] print "dictionaries:", l g = itemgetter("val") vals = [g(i) for i in l] print "values: ", vals print "sorted:", sorted(l, key=g) l = [(i,i*-2) for i in xrange(4)] print "tuples: ", l g = itemgetter(1) vals = [g(i) for i in l] print "values:", vals print "sorted:", sorted(l, key=g)
結果は次のとおりです:
dictionaries: [{'val': 0}, {'val': -1}, {'val': -2}, {'val': -3}] values: [0, -1, -2, -3] sorted: [{'val': -3}, {'val': -2}, {'val': -1}, {'val': 0}] tuples: [(0, 0), (1, -2), (2, -4), (3, -6)] values: [0, -2, -4, -6] sorted: [(3, -6), (2, -4), (1, -2), (0, 0)]
型チェック
演算子モジュールには、マッピング、数値型、シーケンス型の API 互換性をテストする関数も含まれています。
from operator import * class MyObj(object): def __init__(self, val): super(MyObj, self).__init__() self.val = val return def __str__(self): return "MyObj(%s)" % self.val def __lt__(self, other): return self.val < other.val def __add__(self, other): return MyObj(self.val + other.val) a = MyObj(1) b = MyObj(2) print lt(a, b) print add(a,b)
結果は次のとおりです:
True MyObj(3)
しかし、言い訳が厳密に定義されていないため、これらのテストは不完全です。
オブジェクトのメソッドを取得
methodcallerを使用してオブジェクトのメソッドを取得します。
from operator import * class NoType(object): pass class MultiType(object): def __len__(self): return 0 def __getitem__(self, name): return "mapping" def __int__(self): return 0 o = NoType() t = MultiType() for func in [isMappingType, isNumberType, isSequenceType]: print "%s(o):" % func.__name__, func(o) print "%s(t):" % func.__name__, func(t)
メソッドにパラメータを渡すこともできます:
isMappingType(o): False isMappingType(t): True isNumberType(o): False isNumberType(t): True isSequenceType(o): False isSequenceType(t): True
Python の演算子モジュールでの演算子の使用に関連するその他の記事については、PHP 中国語 Web サイトに注目してください。 !

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLのインストール障害の主な理由は次のとおりです。1。許可の問題、管理者として実行するか、SUDOコマンドを使用する必要があります。 2。依存関係が欠落しており、関連する開発パッケージをインストールする必要があります。 3.ポート競合では、ポート3306を占めるプログラムを閉じるか、構成ファイルを変更する必要があります。 4.インストールパッケージが破損しているため、整合性をダウンロードして検証する必要があります。 5.環境変数は誤って構成されており、環境変数はオペレーティングシステムに従って正しく構成する必要があります。これらの問題を解決し、各ステップを慎重に確認して、MySQLを正常にインストールします。

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

MySQLは、基本的なデータストレージと管理のためにネットワーク接続なしで実行できます。ただし、他のシステムとのやり取り、リモートアクセス、または複製やクラスタリングなどの高度な機能を使用するには、ネットワーク接続が必要です。さらに、セキュリティ対策(ファイアウォールなど)、パフォーマンスの最適化(適切なネットワーク接続を選択)、およびデータバックアップは、インターネットに接続するために重要です。

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

hadidb:軽量で高レベルのスケーラブルなPythonデータベースHadIDB(HadIDB)は、Pythonで記述された軽量データベースで、スケーラビリティが高くなっています。 PIPインストールを使用してHADIDBをインストールする:PIPINSTALLHADIDBユーザー管理CREATEユーザー:CREATEUSER()メソッド新しいユーザーを作成します。 Authentication()メソッドは、ユーザーのIDを認証します。 fromhadidb.operationimportuseruser_obj = user( "admin"、 "admin")user_obj。
