目次
はじめに
Executor と Future
/waitを使用してスレッドプール/プロセスプールを操作します" >map/waitを使用してスレッドプール/プロセスプールを操作します
wait メソッドはタプル (タプル) を返します。タプルには 2 つの
ホームページ バックエンド開発 Python チュートリアル Python 同時プログラミングにおけるスレッド プール/プロセス プールの詳細な紹介

Python 同時プログラミングにおけるスレッド プール/プロセス プールの詳細な紹介

Mar 17, 2017 pm 05:38 PM
python

はじめに

Python 標準ライブラリは、対応するマルチスレッド/マルチプロセスコードを記述するためのスレッド化モジュールとマルチプロセッシングモジュールを提供しますが、プロジェクトが一定の規模に達すると、プロセスまたはスレッドの作成/破棄が頻繁に発生します。現時点では、スペースと時間を交換するために独自のスレッド プール/プロセス プールを作成する必要があります。しかし、Python 3.2 以降、標準ライブラリは concurrent.futures モジュールを提供します。これは、ThreadPoolExecutor と ProcessPoolExecutor の 2 つのクラスを提供します。これは、スレッドとマルチプロセッシングのさらなる抽象化を実現し、スレッドの作成に役立ちます。 /Process プールは直接サポートを提供します。

Executor と Future

concurrent.futures モジュールは Executor に基づいており、Executor は 抽象クラス であり、直接使用することはできません。ただし、提供される 2 つのサブクラス ThreadPoolExecutor と ProcessPoolExecutor は、名前が示すように、それぞれスレッド プール コードとプロセス プール コードの作成に使用されます。対応するタスクをスレッド プール/プロセス プールに直接配置でき、デッドロックを心配するためにキューを維持する必要はありません。スレッド プール/プロセス プールが自動的にスケジュールを設定します。

将来この概念は、Javajsプログラミングを経験している友人にはよく知られていると思いますこれは、将来完成する操作として理解できます。従来のプログラミング モードでは、たとえば、queue.get を操作すると、結果が返されるのを待つ前にブロックが発生し、CPU を解放して他の作業を行うことができなくなります。Future の導入により、待機中に他の操作を完了できるようになります。 。 Python の非同期 IO については、この記事を読んだ後に私の Python 同時プログラミング コルーチン/非同期 IO を参照してください。

追記: まだ Python2.x に固執している場合は、まずfutures モジュールをinstallしてください。

pip install futures
ログイン後にコピー

スレッドプール/プロセスプールを操作するにはsubmitを使用します

まずは以下のコードを通してスレッドプールの概念を理解しましょう

# example1.py
from concurrent.futures import ThreadPoolExecutor
import time
def return_future_result(message):
    time.sleep(2)
    return message
pool = ThreadPoolExecutor(max_workers=2)  # 创建一个最大可容纳2个task的线程池
future1 = pool.submit(return_future_result, ("hello"))  # 往线程池里面加入一个task
future2 = pool.submit(return_future_result, ("world"))  # 往线程池里面加入一个task
print(future1.done())  # 判断task1是否结束
time.sleep(3)
print(future2.done())  # 判断task2是否结束
print(future1.result())  # 查看task1返回的结果
print(future2.result())  # 查看task2返回的结果
ログイン後にコピー

実行結果をもとに分析してみましょう。

submit メソッドを使用してスレッド プールにタスクを追加し、submit は Future オブジェクト を返します。Future オブジェクトは、将来に完了する操作として単純に理解できます。最初の print ステートメントでは、メインスレッドを一時停止するために time.sleep(3) を使用したため、time.sleep(2) が原因で future1 が完了していないことは明らかです。したがって、2 番目の print ステートメントに関しては、次のようになります。スレッド プール ここでのタスクはすべて完了しました。

ziwenxie :: ~ » python example1.py
False
True
hello
world
# 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie      8361  7557  8361  3    3 19:45 pts/0    00:00:00 python example1.py
ziwenxie      8361  7557  8362  0    3 19:45 pts/0    00:00:00 python example1.py
ziwenxie      8361  7557  8363  0    3 19:45 pts/0    00:00:00 python example1.py
ログイン後にコピー

上記のコードをプロセス プール形式に書き直すこともできます。

api はスレッド プールとまったく同じなので、詳しく説明しません。

# example2.py
from concurrent.futures import ProcessPoolExecutor
import time
def return_future_result(message):
    time.sleep(2)
    return message
pool = ProcessPoolExecutor(max_workers=2)
future1 = pool.submit(return_future_result, ("hello"))
future2 = pool.submit(return_future_result, ("world"))
print(future1.done())
time.sleep(3)
print(future2.done())
print(future1.result())
print(future2.result())
ログイン後にコピー

以下は実行結果です

ziwenxie :: ~ » python example2.py
False
True
hello
world
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie      8560  7557  8560  3    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8560  7557  8563  0    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8560  7557  8564  0    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8561  8560  8561  0    1 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8562  8560  8562  0    1 19:53 pts/0    00:00:00 python example2.py
ログイン後にコピー

map/waitを使用してスレッドプール/プロセスプールを操作します

Executorはsubmitに加えて、組み込みメソッドと同様のmapメソッドも提供します。以下では 2 つのマップの使用法を使用します。 2 つの違いを例で比較してみましょう。

submitオペレーションの使い方の復習

# example3.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url, timeout):
    with urllib.request.urlopen(url, timeout=timeout) as conn:
        return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
    # Start the load operations and mark each future with its URL
    future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception as exc:
            print('%r generated an exception: %s' % (url, exc))
        else:
            print('%r page is %d bytes' % (url, len(data)))
ログイン後にコピー

実行結果からわかるように、

as_completedはURLSリスト要素の順番で返されません

ziwenxie :: ~ » python example3.py
'http://example.com/' page is 1270 byte
'https://api.github.com/' page is 2039 bytes
'http://httpbin.org' page is 12150 bytes
ログイン後にコピー

map を使用する

# example4.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url):
    with urllib.request.urlopen(url, timeout=60) as conn:
        return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
    for url, data in zip(URLS, executor.map(load_url, URLS)):
        print('%r page is %d bytes' % (url, len(data)))
ログイン後にコピー

実行結果から、

map は URLS リストの要素を順番に返します ことがわかり、記述されたコードはより簡潔で直感的です。特定の内容に応じていずれかを選択できます。ニーズ。

ziwenxie :: ~ » python example4.py
'http://httpbin.org' page is 12150 bytes
'http://example.com/' page is 1270 bytes
'https://api.github.com/' page is 2039 bytes
ログイン後にコピー

3 番目のオプション wait

wait メソッドはタプル (タプル) を返します。タプルには 2 つの

set

(セット) が含まれており、1 つは完了済み (completed)、もう 1 つは未完了 (uncompleted) です。 wait メソッドを使用する利点の 1 つは、FIRST_COMPLETED、FIRST_EXCEPTION、および ALL_COMPLETE という 3 つのパラメーターを自由に使用できることです。 次の例で 3 つのパラメータの違いを見てみましょう

from concurrent.futures import ThreadPoolExecutor, wait, as_completed
from time import sleep
from random import randint
def return_after_random_secs(num):
    sleep(randint(1, 5))
    return "Return of {}".format(num)
pool = ThreadPoolExecutor(5)
futures = []
for x in range(5):
    futures.append(pool.submit(return_after_random_secs, x))
print(wait(futures))
# print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
ログイン後にコピー

デフォルトの ALL_COMPLETED が使用されている場合、プログラムはスレッド プール内のすべてのタスクが完了するまでブロックされます。

ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
ログイン後にコピー

FIRST_COMPLETED パラメータを使用すると、プログラムはスレッド プール内のすべてのタスクが完了するまで待機しません。

りー

以上がPython 同時プログラミングにおけるスレッド プール/プロセス プールの詳細な紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentosでPytorchモデルを訓練する方法 CentosでPytorchモデルを訓練する方法 Apr 14, 2025 pm 03:03 PM

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

CentosのPytorchのGPUサポートはどのようにサポートされていますか CentosのPytorchのGPUサポートはどのようにサポートされていますか Apr 14, 2025 pm 06:48 PM

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Centosの下でPytorchバージョンを選択する方法 Centosの下でPytorchバージョンを選択する方法 Apr 14, 2025 pm 02:51 PM

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

CentosでPytorchの分散トレーニングを操作する方法 CentosでPytorchの分散トレーニングを操作する方法 Apr 14, 2025 pm 06:36 PM

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

NginxをCentosにインストールする方法 NginxをCentosにインストールする方法 Apr 14, 2025 pm 08:06 PM

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

See all articles