Python を使用して非同期プロキシ クローラーおよびプロキシ プール メソッドを実装する
この記事では主に Python非同期プロキシ クローラーとプロキシ プールの実装に関する知識を紹介します。非常に参考になります。エディターで見てみましょう
非同期プロキシ プールとクロールを実装するには、Python を使用します。ルールに従って、プロキシ Web サイトから無料のプロキシを取得し、有効性を確認した後、redis に保存します。プロキシの数を定期的に拡張し、プール内のプロキシの有効性を確認し、無効なプロキシを削除します。同時に、サーバーは aiohttp を使用して実装され、他のプログラムは対応する URL にアクセスすることでプロキシ プールからプロキシを取得できます。
ソースコード
https://github.com/arrti/proxypool
環境
Python 3.5+
Redis
PhantomJS(オプション)
Supervisord (オプション)
asyncio の async および await 構文はコード内で広範囲に使用されているため、これらは Python3.5 でのみ提供されているため、Python3.5 以降のバージョンを使用するのが最善です。私は Python3 を使用しています。 .6。依存関係
selenium
- Selenium パッケージは主に PhantomJS を操作するために使用されます。
コードについては以下で説明します。
- 1. クローラー部分
コアコード
-
async def start(self): for rule in self._rules: parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理 logger.debug('{0} crawler started'.format(rule.rule_name)) if not rule.use_phantomjs: await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面 else: await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages, rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取 await self._pages.join() parser.cancel() logger.debug('{0} crawler finished'.format(rule.rule_name))
ログイン後にコピー上記のコアコードは、実際には、asyncio.Queueを使用して実装されたプロダクション/コンシューマモデル
です。以下は、このモデルの簡単な実装です。上記のコードを実行すると、次のような出力が得られます。
import asyncio from random import random async def produce(queue, n): for x in range(1, n + 1): print('produce ', x) await asyncio.sleep(random()) await queue.put(x) # 向queue中放入item async def consume(queue): while 1: item = await queue.get() # 等待从queue中获取item print('consume ', item) await asyncio.sleep(random()) queue.task_done() # 通知queue当前item处理完毕 async def run(n): queue = asyncio.Queue() consumer = asyncio.ensure_future(consume(queue)) await produce(queue, n) # 等待生产者结束 await queue.join() # 阻塞直到queue不为空 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处 def aio_queue_run(n): loop = asyncio.get_event_loop() try: loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束 finally: loop.close() if name == 'main': aio_queue_run(5)
produce 1 produce 2 consume 1 produce 3 produce 4 consume 2 produce 5 consume 3 consume 4 consume 5
最も簡単な方法は、
xpathを使用してプロキシを解析することです。Chrome ブラウザを使用している場合は、右クリックして選択したページ要素の xpath を直接取得できます。
Chrome の拡張機能「XPath Helper」をインストールすると、ページ上で直接 xpath を実行およびデバッグできます。これは非常に便利です:
BeautifulSoup は xpath をサポートせず、lxml を使用してページを解析します。 コードは次のとおりです。 :async def page_download(urls, pages, flag): url_generator = urls async with aiohttp.ClientSession() as session: for url in url_generator: if flag.is_set(): break await asyncio.sleep(uniform(delay - 0.5, delay + 1)) logger.debug('crawling proxy web page {0}'.format(url)) try: async with session.get(url, headers=headers, timeout=10) as response: page = await response.text() parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection await pages.put(parsed) url_generator.send(parsed) # 根据当前页面来获取下一页的地址 except StopIteration: break except asyncio.TimeoutError: logger.error('crawling {0} timeout'.format(url)) continue # TODO: use a proxy except Exception as e: logger.error(e)
async def _parse_proxy(self, rule, page): ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合 if not ips or not ports: logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'. format(len(ips), len(ports), rule.rule_name)) return proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports) if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等 filters = [] for i, ft in enumerate(rule.filters_xpath): field = page.xpath(ft) if not field: logger.warning('{1} crawler could not get {0} field, please check the filter xpath'. format(rule.filters[i], rule.rule_name)) continue filters.append(map(lambda x: x.text.strip(), field)) filters = zip(*filters) selector = map(lambda x: x == rule.filters, filters) proxies = compress(proxies, selector) for proxy in proxies: await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中
start_url
(必須) クローラーの開始ページ。
ip_xpath
(必須) IP をクロールするためのport_xpath
(必須) ポート番号のクロール xpath ルール。 page_count
クロールされたページの数。
urls_format
の形式. format(start_url, n) は、一般的なページ アドレス形式であるページ n のアドレスを生成します。
由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。 use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。 过滤字段集合,可迭代类型。用于过滤代理。 爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。 元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。 目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的init.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.subclasses()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。 2. 检验部分 免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。 这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。 3. server部分 使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页: 访问http://host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080'; 访问http://host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']"; 访问http://host:port/count来获取代理池的容量,如:'42'。 因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。 返回代理是通过 返回主页则不同,是通过 这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。 4. 运行 将整个代理池的功能分成了3个独立的部分: proxypool 定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。 proxyvalidator 用于定期检验代理池中的代理,移除失效代理。 proxyserver 启动server。 这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:next_page_xpath
、next_page_host
use_phantomjs
, phantomjs_load_flag
filters
async def validate(self, proxies):
logger.debug('validator started')
while 1:
proxy = await proxies.get()
async with aiohttp.ClientSession() as session:
try:
real_proxy = 'http://' + proxy
async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:
self._conn.put(proxy)
except Exception as e:
logger.error(e)
proxies.task_done()
aiohttp.web.Response(text=ip.decode('utf-8'))
实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。aiohttp.web.Response(body=main_page_cache, content_type='text/html')
,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'
必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。; supervisord.conf
[unix_http_server]
file=/tmp/supervisor.sock
[inet_http_server]
port=127.0.0.1:9001
[supervisord]
logfile=/tmp/supervisord.log
logfile_maxbytes=5MB
logfile_backups=10
loglevel=debug
pidfile=/tmp/supervisord.pid
nodaemon=false
minfds=1024
minprocs=200
[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface
[supervisorctl]
serverurl=unix:///tmp/supervisor.sock
[program:proxyPool]
command=python /path/to/ProxyPool/run_proxypool.py
redirect_stderr=true
stdout_logfile=NONE
[program:proxyValidator]
command=python /path/to/ProxyPool/run_proxyvalidator.py
redirect_stderr=true
stdout_logfile=NONE
[program:proxyServer]
command=python /path/to/ProxyPool/run_proxyserver.py
autostart=false
redirect_stderr=true
stdout_logfile=NONE
因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:
Supervisod の公式ドキュメントには、現在 (バージョン 3.3.1) は python3 をサポートしていないと書かれていますが、使用中に問題は見つかりませんでした。 Supervisord の複雑な機能を使用していないこともあるかもしれませんが、これは、単純なプロセスステータスの監視と開始および停止ツールと見なされます。
以上がPython を使用して非同期プロキシ クローラーおよびプロキシ プール メソッドを実装するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。

正規表現は、プログラミングにおけるパターンマッチングとテキスト操作のための強力なツールであり、さまざまなアプリケーションにわたるテキスト処理の効率を高めます。
