21 行の Python コードでスペルチェッカーを実装する方法
紹介
Google または Baidu で検索するとき、Google は検索コンテンツを入力するときに常に優れたスペルチェックを提供します。たとえば、スペルと入力すると、Google はすぐに スペル を返します。
以下は、21 行の Python コードで実装された、シンプルだが完全に機能するスペル チェッカーです。
Code
import re, collections def words(text): return re.findall('[a-z]+', text.lower()) def train(features): model = collections.defaultdict(lambda: 1) for f in features: model[f] += 1 return model NWORDS = train(words(file('big.txt').read())) alphabet = 'abcdefghijklmnopqrstuvwxyz' def edits1(word): splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [a + b[1:] for a, b in splits if b] transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1] replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b] inserts = [a + c + b for a, b in splits for c in alphabet] return set(deletes + transposes + replaces + inserts) def known_edits2(word): return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS) def known(words): return set(w for w in words if w in NWORDS) def correct(word): candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word] return max(candidates, key=NWORDS.get)
correct 関数はプログラムのエントリ ポイントであり、渡されたスペルが間違っている単語は正しく返されます。例:
>>> correct("cpoy") 'copy' >>> correct("engilsh") 'english' >>> correct("sruprise") 'surprise'
このコードに加えて、機械学習の一環として必ず大量のサンプル データが必要になります。サンプル データとして big.txt が用意されています。
背後にある原理
上記のコードはベイジアンに基づいて実装されています。実際、Google Baidu によって実装されているスペル チェックもベイジアンによって実装されていますが、これよりも明らかに複雑です。
まず、その背後にある原理を簡単に紹介します。すでに理解している読者は、このセクションを読み飛ばしていただいても構いません。
単語が与えられると、最も正しいスペル候補を選択しようとします (入力された単語が候補になる場合もあります)。場合によっては、それが不明確である場合 (たとえば、遅刻を遅刻または遅刻に修正する必要があるか)、どちらを提案として使用するかを確率を使用して決定します。元の単語 w に関連するすべての可能な正しいスペルから最も可能性の高いスペル候補 c を見つけます:
argmaxc P(c|w)
ベイズの定理により、上記の式は
argmaxc P(w|c) P(c) / P(w)
に変換できます。 以下は、上の式の意味を紹介します:
P(c|w) は、単語 w を入力するときに、もともと単語 c を入力したかった確率を表します。
P(w|c) は、ユーザーが単語 c を入力したいのに w を入力する確率を表します。これは所与であると考えることができます。
P(c) は単語 c がサンプルデータに出現する確率を表します
P(w) は単語 w がサンプル番号に出現する確率を表します
P(w) はすべての可能な単語に対して決定できますc 確率 これらはすべて同じなので、上記の式は次のように変換できます
argmaxc P(w|c) P(c)
すべてのコードはこの式に基づいています
コード分析
words() 関数を使用して抽出します。 big.txt の単語def words(text): return re.findall('[a-z]+', text.lower())
train() 関数を使用して、各単語の出現回数を計算し、NWORDS[w] がサンプル内に単語 w が出現する回数を表すように、適切なモデル
def train(features): model = collections.defaultdict(lambda: 1) for f in features: model[f] += 1 return model NWORDS = train(words(file('big.txt').read()))
の P(c) を処理したので、次は P(w|c)、つまり単語を入力する確率を処理します。 「編集距離」を介して単語 c を入力しようとしたとき、w が間違っている -- ある単語を別の単語に変更するのに必要な編集の数によって測定されます。編集には、削除、交換 (隣接する 2 つの文字)、挿入、および 1 つの単語が含まれます。次の関数は、c を返します。一度編集することで取得できるすべての単語 w のセットです。 argmaxc P(w|c) P(c)
def edits1(word): splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [a + b[1:] for a, b in splits if b] transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1] replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b] inserts = [a + c + b for a, b in splits for c in alphabet] return set(deletes + transposes + replaces + inserts)
def known_edits2(word): return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word): candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word] return max(candidates, key=NWORDS.get
以上が21 行の Python コードでスペルチェッカーを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
