NumPy メソッドの使用に関する概要の概要
NumPy は、Python のオープンソース数値計算拡張機能です。このツールは大規模な行列の保存と処理に使用でき、Python 独自のネストされた list 構造 (行列の表現にも使用できます) よりもはるかに効率的です。 NumPy (Numeric Python) は、行列データ型、ベクトル処理、高度な算術ライブラリなど、多くの高度な数値プログラミング ツールを提供します。厳密な数値処理のために構築されています。これは主に多くの大手金融会社や、ローレンス リバモアなどの中核的な科学技術コンピューティング組織で使用されており、NASA は元々 C++、Fortran、または Matlab を使用して実行されていた一部のタスクを処理するためにこれを使用しています。
numpyのデータ型であるndarray型は、標準ライブラリのarray.arrayとは異なります。
ndarrayの作成
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
2次元array
>>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
作成時に型を指定する
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
特別な行列を作成する
>>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # uninitialized, output may vary array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260], [ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
特定のルールで行列を作成する
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) >>> from numpy import pi >>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2 array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points >>> f = np.sin(x)
いくつかの基本的な操作
加算と減算乗算と割り算 三角関数 論理演算 >>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
ログイン後にコピー
行列演算 matlab には .*、./ などがあります しかし、numpy では、+、-、×、/ を使用すると、各点間の加算は次のようになります減算、乗算、除算が最初に実行されます 2 つの行列 (正方行列) が要素間の演算と行列演算を実行できる場合、要素間の演算が最初に実行されます>>> a = np.array( [20,30,40,50] ) >>> b = np.arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([ True, True, False, False], dtype=bool)
>>> import numpy as np >>> A = np.arange(10,20) >>> B = np.arange(20,30) >>> A + B array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48]) >>> A * B array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551]) >>> A / B array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> B / A array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
サイズ変更は元の行列を変更しますが、形状変更はしません
>>> A = np.array([1,1,1,1]) >>> B = np.array([2,2,2,2]) >>> A.reshape(2,2) array([[1, 1], [1, 1]]) >>> B.reshape(2,2) array([[2, 2], [2, 2]]) >>> A * B array([2, 2, 2, 2]) >>> np.dot(A,B) 8 >>> A.dot(B) 8
行列をマージします>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1. , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([ 0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2., 0., 6.])
ログイン後にコピー
>>> B = np.arange(3) >>> B array([0, 1, 2]) >>> np.exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> np.sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = np.array([2., -1., 4.]) >>> np.add(B, C) array([ 2., 0., 6.])
以上がNumPy メソッドの使用に関する概要の概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









numpy バージョンを更新する方法: 1. 「pip install --upgrade numpy」コマンドを使用します。 2. Python 3.x バージョンを使用している場合は、「pip3 install --upgrade numpy」コマンドを使用します。現在の NumPy バージョンを上書きしてインストールします; 3. conda を使用して Python 環境を管理している場合は、「conda install --update numpy」コマンドを使用して更新します。

Numpy は Python の重要な数学ライブラリであり、効率的な配列演算と科学技術計算機能を提供し、データ分析、機械学習、深層学習などの分野で広く使用されています。 numpy を使用する場合、多くの場合、現在の環境でサポートされている機能を確認するために numpy のバージョン番号を確認する必要があります。この記事では、numpyのバージョンを簡単に確認する方法と具体的なコード例を紹介します。方法 1: numpy に付属の __version__ 属性を使用する numpy モジュールには __ が付属しています

最新バージョンの NumPy1.21.2 を使用することをお勧めします。その理由は次のとおりです。現在、NumPy の最新の安定バージョンは 1.21.2 です。一般に、NumPy の最新バージョンを使用することをお勧めします。これには、最新の機能とパフォーマンスの最適化が含まれており、以前のバージョンのいくつかの問題とバグが修正されています。

numpy バージョンをアップグレードする方法: わかりやすいチュートリアル、具体的なコード例が必要 はじめに: NumPy は科学技術計算に使用される重要な Python ライブラリです。これは、強力な多次元配列オブジェクトと、効率的な数値演算を実行するために使用できる一連の関連関数を提供します。新しいバージョンがリリースされると、新しい機能やバグ修正が常に提供されます。この記事では、インストールされている NumPy ライブラリをアップグレードして最新の機能を入手し、既知の問題を解決する方法について説明します。ステップ 1: 最初に現在の NumPy バージョンを確認する

NumPy を PyCharm にインストールし、その強力な機能を最大限に活用する方法をステップバイステップで説明します。はじめに: NumPy は、Python の科学計算用の基本ライブラリの 1 つであり、高性能の多次元配列オブジェクトと実行に必要なさまざまな関数を提供します。配列に対する基本的な操作。関数。これは、ほとんどのデータ サイエンスおよび機械学習プロジェクトの重要な部分です。この記事では、NumPy を PyCharm にインストールする方法を紹介し、具体的なコード例を通じてその強力な機能を示します。ステップ 1: PyCharm をインストールする まず、

numpy でディメンションを追加する方法: 1. ディメンションを追加するには、「np.newaxis」を使用します。「np.newaxis」は、指定された位置に新しいディメンションを挿入するために使用される特別なインデックス値です。対応する位置で np.newaxis を使用できます。 . 次元を増やすには; 2.「np.expand_dims()」を使って次元を増やす 「np.expand_dims()」関数は、指定した位置に新しい次元を挿入して配列の次元を増やすことができます。

データ サイエンス、機械学習、深層学習などの分野の急速な発展に伴い、Python はデータ分析とモデリングの主流の言語になりました。 Python では、NumPy (NumericalPython の略) は、効率的な多次元配列オブジェクトのセットを提供し、pandas、SciPy、scikit-learn などの他の多くのライブラリの基礎となるため、非常に重要なライブラリです。 NumPy を使用する過程で、異なるバージョン間の互換性の問題が発生する可能性があります。

Numpy は、pip、conda、ソースコード、Anaconda を使用してインストールできます。詳細な紹介: 1. pip、コマンド ラインに pip install numpy と入力します; 2. conda、コマンド ラインに conda install numpy と入力します; 3. ソース コード、ソース コード パッケージを解凍するか、ソース コード ディレクトリに入力します、コマンドに入力します行 python setup.py ビルド python setup.py インストール。
