Python を使用する際の 10 個の隠されたイースターエッグ
1. re.DEBUG を使用して正規表現の一致プロセスを表示します
正規表現は Python の主要な機能ですが、デバッグは面倒な場合があり、バグは簡単に見つかります。幸いなことに、Python は正規表現の解析ツリーを出力し、re.compile から re.debug までの完全なプロセスを表示できます。
構文を理解すると、間違いを見つけることができます。ここでは、[/font] が []
2 を削除するのを忘れていることがわかります。2. enumerate 関数は、リスト内の要素とその添字を調べるために使用されます
3。
代わりに、「[]」を「未定義」を表すタグ付きの値に置き換える必要があります。 4. インデントの代わりに括弧を使用する C シリーズの開発者は、次のコマンドを使用するだけです:
from __future__ import braces
5. スライス操作のコツ
a = [ 1,2 ,3,4,5] >>> a[::2] [1,3,5]
リストを反転できる特殊な例は x[::-1] です> ;>> ; a[::-1] [5,4,3,2,1]
6. デコレーター
デコレーターは、関数内の他の関数またはメソッドを呼び出して、パラメーターや結果などを変更するために実装されます。 、関数定義の前にデコレーターを追加し、「@」記号のみが必要です。
次の例は、print_args デコレーターの使用法を示しています。7. パラメーターを取得するコツ
関数パラメーターとしてリストまたは辞書を取り出すには、* または ** を使用できます
8。 else ステートメント
"else" を使用することは、"try" ステートメントに冗長なコードを追加するよりも優れています。宣言を除いて、try ステートメントによって保護されていない例外を誤って取得することを回避できるからです。
9. ネストされたリストの内包表記とジェネレーター式
[(i,j) for i in range(3) for j in range(i) ]
((i,j) for i in range(4 ) for j in range(i) )これらのステートメントは、多数のネストされたループ コード ブロックを置き換えることができます
10. 主な文パターン
これをインポートします
Python の禅のエッセンスをもう一度暗唱しましょう (The Zen of Python、Tim Peters 著) ):醜いよりも美しい方が優れています。
暗黙的よりも明示的が優れています。
複雑よりも単純が優れています。
複雑よりも優れています。
ネストされているよりもフラットが優れています。
密よりも疎が優れています。
以上がPython を使用する際の 10 個の隠されたイースターエッグの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

CentOSシステムのPytorchデータを効率的に処理するには、次の手順が必要です。依存関係のインストール:システムを最初に更新し、Python3とPIPをインストールします。仮想環境構成(推奨):Condaを使用して、新しい仮想環境を作成およびアクティブにします。例:Condacreate-N
