ホームページ バックエンド開発 Python チュートリアル Python メモリを手動で解放する方法

Python メモリを手動で解放する方法

Mar 24, 2017 pm 05:37 PM
python

上記の最適化では、500 ユーザーごとにいくつかの計算が実行され、結果がディスク ファイルに記録されます。私は当初、これを行うことで、これらの結果がディスク ファイルに保存され、メモリを占有し続けることはないと考えていました。しかし、実際には、Python の大きな落とし穴は、Python がこれらのメモリを自動的にクリーンアップしないことです。これは独自の実装によって決まります。具体的な理由を説明した記事がインターネット上にたくさんあるので、ここではコピーしません。
この記事では、Python にメモリが解放されない現象があることを説明するために、著者による実験的なスクリプトを掲載します。さらに、最初に del を実行し、次に明示的に gc.collect() を呼び出すという解決策も提案します。スクリプトと詳細 効果は以下の通りです。
実験環境 1: Win 7、Python 2.7

from time import sleep, time 
import gc 
 
def mem(way=1): 
 print time() 
 for i in range(10000000): 
  if way == 1: 
   pass 
  else: # way 2, 3 
   del i 
    
 print time() 
 if way == 1 or way == 2: 
  pass 
 else: # way 3 
  gc.collect() 
 print time() 
   
if __name__ == "__main__": 
 print "Test way 1: just pass" 
 mem(way=1) 
 sleep(20) 
 print "Test way 2: just del" 
 mem(way=2) 
 sleep(20) 
 print "Test way 3: del, and then gc.collect()" 
 mem(way=3) 
 sleep(20)
ログイン後にコピー


実行結果は次のとおりです:

Test way 1: just pass 
1426688589.47 
1426688590.25 
1426688590.25 
Test way 2: just del 
1426688610.25 
1426688611.05 
1426688611.05 
Test way 3: del, and then gc.collect() 
1426688631.05 
1426688631.85 
1426688631.95
ログイン後にコピー


方法 1 と方法 2 では、結果はまったく同じです。プログラムのピークメモリ消費量は 326772KB です。 20 秒間のスリープ時のリアルタイム メモリ消費量は 244820KB です。方法 3 の場合、プログラムのピーク メモリ消費量は上記と同じですが、スリープ中のリアルタイム メモリ消費量はわずか 6336KB です。

実験環境 2: Ubuntu 14.10、Python 2.7.3実行結果:

Test way 1: just pass 
1426689577.46 
1426689579.41 
1426689579.41 
Test way 2: just del 
1426689599.43 
1426689601.1 
1426689601.1 
Test way 3: del, and then gc.collect() 
1426689621.12 
1426689622.8 
1426689623.11
ログイン後にコピー
ubuntu@my_machine:~$ ps -aux | grep test_mem 
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html 
ubuntu 9122 10.0 6.0 270916 245564 pts/1 S+ 14:39 0:03 python test_mem.py 
ubuntu 9134 0.0 0.0 8104 924 pts/2 S+ 14:40 0:00 grep --color=auto test_mem 
ubuntu@my_machine:~$ ps -aux | grep test_mem 
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html 
ubuntu 9122 10.0 6.0 270916 245564 pts/1 S+ 14:39 0:03 python test_mem.py 
ubuntu 9134 0.0 0.0 8104 924 pts/2 S+ 14:40 0:00 grep --color=auto test_mem 
ubuntu@my_machine:~$ ps -aux | grep test_mem 
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html 
ubuntu 9122 11.6 0.1 30956 5608 pts/1 S+ 14:39 0:05 python test_mem.py
ログイン後にコピー

結論:
上記は、del が呼び出されたとき、Python は実際にはメモリを解放せず、メモリをメモリに配置し続けることを示しています。メモリ プール内に配置します。メモリは、gc.collect() が明示的に呼び出された場合にのみ解放されます。
さらに:
実際には、前のブログのスクリプトに戻って gc.collect() を導入し、メモリ消費を監視する監視スクリプトを作成します:

while ((1)); do ps -aux | sort -n -k5,6 | grep my_script; free; sleep 5; done
ログイン後にコピー

結果は次のようになります: メモリは500 回ごとに変更しない ユーザーは一連の実行後に再開しますが、残り約 70MB になるまで消費を続け、その後 gc が機能するように見えます。この環境では、マシンはクラウド インスタンスを使用しており、合計メモリは 2G、使用可能なメモリは約 1G です。このスクリプトの一般的なメモリ消費量は 900M ~ 1G です。つまり、このスクリプトの場合、gc はすぐには有効になりませんが、システムの使用可能なメモリが 1 ~ 1.2G からわずか約 70M に低下すると、gc が有効になり始めます。これは確かに奇妙です。スクリプトが Thread で gc.collect() を使用するという事実と関係があるのか​​、それとも gc の関数がそもそも制御できないのかはわかりません。著者はまだ関連する実験を行っていないため、次回のブログで引き続き議論する可能性があります。
ただし、gc.collect() を使用しない場合、元のスクリプトがシステム メモリを使い果たして強制終了されることは確かです。これは syslog から明らかです。

以上がPython メモリを手動で解放する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentosでPytorchモデルを訓練する方法 CentosでPytorchモデルを訓練する方法 Apr 14, 2025 pm 03:03 PM

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

CentosのPytorchのGPUサポートはどのようにサポートされていますか CentosのPytorchのGPUサポートはどのようにサポートされていますか Apr 14, 2025 pm 06:48 PM

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Centosの下でPytorchバージョンを選択する方法 Centosの下でPytorchバージョンを選択する方法 Apr 14, 2025 pm 02:51 PM

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

NginxをCentosにインストールする方法 NginxをCentosにインストールする方法 Apr 14, 2025 pm 08:06 PM

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

CentosでPytorchを使用してデータ前処理を行う方法 CentosでPytorchを使用してデータ前処理を行う方法 Apr 14, 2025 pm 02:15 PM

CentOSシステムのPytorchデータを効率的に処理するには、次の手順が必要です。依存関係のインストール:システムを最初に更新し、Python3とPIPをインストールします。仮想環境構成(推奨):Condaを使用して、新しい仮想環境を作成およびアクティブにします。例:Condacreate-N

See all articles