Python メニューの再帰クエリと JSON へのデータ変換の例
この記事では主にPythonの再帰クエリメニューを紹介し、それをJSONのサンプルに変換します。興味のある方は参考にしてください。
最近、Python でメニューを書く必要がありましたが、完了するまでに 2 ~ 3 日かかりました。今はそれをここに記録し、必要な友人がそこから学ぶことができます。
注: この記事では、実行不可能な完全なコードを引用しています。コードの重要な部分のみを抜粋しています
環境
データベース: mysql
Python: 3.6
T有能な構造
CREATE TABLE `tb_menu` ( `id` varchar(32) NOT NULL COMMENT '唯一标识', `menu_name` varchar(40) DEFAULT NULL COMMENT '菜单名称', `menu_url` varchar(100) DEFAULT NULL COMMENT '菜单链接', `type` varchar(1) DEFAULT NULL COMMENT '类型', `parent` varchar(32) DEFAULT NULL COMMENT '父级目录id', `del_flag` varchar(1) NOT NULL DEFAULT '0' COMMENT '删除标志 0:不删除 1:已删除', `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY (`id`) USING BTREE ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='菜单表';
Python コード
Menu オブジェクトには、サブメニュー リスト "subMenus" への参照があり、型は list です
コア コード
def set_subMenus(id, menus): """ 根据传递过来的父菜单id,递归设置各层次父菜单的子菜单列表 :param id: 父级id :param menus: 子菜单列表 :return: 如果这个菜单没有子菜单,返回None;如果有子菜单,返回子菜单列表 """ # 记录子菜单列表 subMenus = [] # 遍历子菜单 for m in menus: if m.parent == id: subMenus.append(m) # 把子菜单的子菜单再循环一遍 for sub in subMenus: menus2 = queryByParent(sub.id) # 还有子菜单 if len(menus): sub.subMenus = set_subMenus(sub.id, menus2) # 子菜单列表不为空 if len(subMenus): return subMenus else: # 没有子菜单了 return None
テスト メソッド
def test_set_subMenus(self): # 一级菜单 rootMenus = queryByParent('') for menu in rootMenus: subMenus = queryByParent(menu.id) menu.subMenus = set_subMenus(menu.id, subMenus)
注: 基本的な処理は: 最初に第 1 レベルのメニューをクエリし、次にこのレベルのメニューの ID とこのレベルのメニューのサブメニュー リストを set_subMenus メソッドに渡して、サブメニュー リストの下位レベルのメニューを再帰的に設定します。メニュー ID を渡して、メニューの下のすべてのサブメニューをクエリします。 Null 文字を渡すと、クエリはルート ディレクトリから開始されます
「rootMenus」オブジェクトで、完全なメニュー ツリー構造を確認できます
Json に変換します
私が使用する ORM フレームワークは次のとおりです: sqlalchemy,データベースから直接クエリされた Menu オブジェクトは、Json に変換されるときにエラーを報告します。 Menu オブジェクトを Dto オブジェクトに変換するには、DTO クラスを再定義する必要があります。
MenuDto
class MenuDto(): def init(self, id, menu_name, menu_url, type, parent, subMenus): super().init() self.id = id self.menu_name = menu_name self.menu_url = menu_url self.type = type self.parent = parent self.subMenus = subMenus def str(self): return '%s(id=%s,menu_name=%s,menu_url=%s,type=%s,parent=%s)' % ( self.class.name, self.id, self.menu_name, self.menu_url, self.type, self.parent) repr = str
def set_subMenuDtos(id, menuDtos): """ 根据传递过来的父菜单id,递归设置各层次父菜单的子菜单列表 :param id: 父级id :param menuDtos: 子菜单列表 :return: 如果这个菜单没有子菜单,返回None;如果有子菜单,返回子菜单列表 """ # 记录子菜单列表 subMenuDtos = [] # 遍历子菜单 for m in menuDtos: m.name = to_pinyin(m.menu_name) if m.parent == id: subMenuDtos.append(m) # 把子菜单的子菜单再循环一遍 for sub in subMenuDtos: menus2 = queryByParent(sub.id) menusDto2 = model_list_2_dto_list(menus2, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") # 还有子菜单 if len(menuDtos): if len(menusDto2): sub.subMenus = set_subMenuDtos(sub.id, menusDto2) else: # 没有子菜单,删除该节点 sub.delattr('subMenus') # 子菜单列表不为空 if len(subMenuDtos): return subMenuDtos else: # 没有子菜单了 return None
- to_pinyin は、JSON に戻るときに JSON を返すメソッドに注意する必要はありません。 json と Python の辞書は似ています。最終的に json がページに返されるときは、まず json_dict メソッドを使用して dict 型に変換する必要があります。そうしないと、返される文字列は ""
クエリ結果
- になります。
以上がPython メニューの再帰クエリと JSON へのデータ変換の例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
