ホームページ > バックエンド開発 > Python チュートリアル > Python マルチプロセスで CSV をデータベースにインポート

Python マルチプロセスで CSV をデータベースにインポート

Y2J
リリース: 2017-05-06 14:54:36
オリジナル
2516 人が閲覧しました

この記事では、Python を使用して CSV ファイル データのマルチプロセス インポートを MySQL に実装するアイデアと方法、および特定のコード共有について説明します。同じニーズを持つ友人は参考にしてください。同僚は、CSV データを MySQL 要件にインポートするという問題に取り組んでいます。 2 つの大きな CSV ファイル、それぞれ 2,100 万レコードを含む 3GB と 3,500 万レコードを含む 7GB。この規模のデータの場合、単純な単一プロセス/単一スレッドのインポートには長い時間がかかるため、最終的にはマルチプロセスのアプローチを使用して実装されました。特定のプロセスについては詳しく説明しませんが、重要なポイントをいくつか記録します。

    1 つずつ挿入するのではなく、バッチで挿入します
  1. 挿入を高速化するために、
  2. インデックスを構築しないでください。まず

  3. プロデューサーとコンシューマー
  4. モデル

    、メインプロセスがファイルを読み取り、複数のワーカープロセスが挿入を実行します

  5. MySQLに過度の負荷をかけないようワーカーの数の制御に注意してください
  6. ダーティデータの処理による例外に注意してください
  7. 元のデータはGBKエンコードされているため、UTF-8への変換にも注意してください
  8. クリックを使用してコマンドラインツールをカプセル化してください

  9. コードの実装は次のとおりです:
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import codecs
import csv
import logging
import multiprocessing
import os
import warnings

import click
import MySQLdb
import sqlalchemy

warnings.filterwarnings('ignore', category=MySQLdb.Warning)

# 批量插入的记录数量
BATCH = 5000

DB_URI = 'mysql://root@localhost:3306/example?charset=utf8'

engine = sqlalchemy.create_engine(DB_URI)


def get_table_cols(table):
  sql = 'SELECT * FROM `{table}` LIMIT 0'.format(table=table)
  res = engine.execute(sql)
  return res.keys()


def insert_many(table, cols, rows, cursor):
  sql = 'INSERT INTO `{table}` ({cols}) VALUES ({marks})'.format(
      table=table,
      cols=', '.join(cols),
      marks=', '.join(['%s'] * len(cols)))
  cursor.execute(sql, *rows)
  logging.info('process %s inserted %s rows into table %s', os.getpid(), len(rows), table)


def insert_worker(table, cols, queue):
  rows = []
  # 每个子进程创建自己的 engine 对象
  cursor = sqlalchemy.create_engine(DB_URI)
  while True:
    row = queue.get()
    if row is None:
      if rows:
        insert_many(table, cols, rows, cursor)
      break

    rows.append(row)
    if len(rows) == BATCH:
      insert_many(table, cols, rows, cursor)
      rows = []


def insert_parallel(table, reader, w=10):
  cols = get_table_cols(table)

  # 数据队列,主进程读文件并往里写数据,worker 进程从队列读数据
  # 注意一下控制队列的大小,避免消费太慢导致堆积太多数据,占用过多内存
  queue = multiprocessing.Queue(maxsize=w*BATCH*2)
  workers = []
  for i in range(w):
    p = multiprocessing.Process(target=insert_worker, args=(table, cols, queue))
    p.start()
    workers.append(p)
    logging.info('starting # %s worker process, pid: %s...', i + 1, p.pid)

  dirty_data_file = './{}_dirty_rows.csv'.format(table)
  xf = open(dirty_data_file, 'w')
  writer = csv.writer(xf, delimiter=reader.dialect.delimiter)

  for line in reader:
    # 记录并跳过脏数据: 键值数量不一致
    if len(line) != len(cols):
      writer.writerow(line)
      continue

    # 把 None 值替换为 'NULL'
    clean_line = [None if x == 'NULL' else x for x in line]

    # 往队列里写数据
    queue.put(tuple(clean_line))
    if reader.line_num % 500000 == 0:
      logging.info('put %s tasks into queue.', reader.line_num)

  xf.close()

  # 给每个 worker 发送任务结束的信号
  logging.info('send close signal to worker processes')
  for i in range(w):
    queue.put(None)

  for p in workers:
    p.join()


def convert_file_to_utf8(f, rv_file=None):
  if not rv_file:
    name, ext = os.path.splitext(f)
    if isinstance(name, unicode):
      name = name.encode('utf8')
    rv_file = '{}_utf8{}'.format(name, ext)
  logging.info('start to process file %s', f)
  with open(f) as infd:
    with open(rv_file, 'w') as outfd:
      lines = []
      loop = 0
      chunck = 200000
      first_line = infd.readline().strip(codecs.BOM_UTF8).strip() + '\n'
      lines.append(first_line)
      for line in infd:
        clean_line = line.decode('gb18030').encode('utf8')
        clean_line = clean_line.rstrip() + '\n'
        lines.append(clean_line)
        if len(lines) == chunck:
          outfd.writelines(lines)
          lines = []
          loop += 1
          logging.info('processed %s lines.', loop * chunck)

      outfd.writelines(lines)
      logging.info('processed %s lines.', loop * chunck + len(lines))


@click.group()
def cli():
  logging.basicConfig(level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')


@cli.command('gbk_to_utf8')
@click.argument('f')
def convert_gbk_to_utf8(f):
  convert_file_to_utf8(f)


@cli.command('load')
@click.option('-t', '--table', required=True, help='表名')
@click.option('-i', '--filename', required=True, help='输入文件')
@click.option('-w', '--workers', default=10, help='worker 数量,默认 10')
def load_fac_day_pro_nos_sal_table(table, filename, workers):
  with open(filename) as fd:
    fd.readline()  # skip header
    reader = csv.reader(fd)
    insert_parallel(table, reader, w=workers)


if name == 'main':
  cli()
ログイン後にコピー

[関連する推奨事項]

1.

Python 学習マニュアル

3.

Geek Academy Python ビデオ チュートリアル

以上がPython マルチプロセスで CSV をデータベースにインポートの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
最新の問題
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート