スパース ストレージと Python スパース行列の変換の詳細な紹介
この記事では、主に Python 疎行列 - スパース ストレージと変換関連の情報を紹介します。必要な方は、
疎行列 - sparsep
from scipy import sparse
The storage form of sparse matrices
In Science and In を参照してください。工学分野では、線形モデルを解くときに多くの大きな行列が頻繁に出現します。これらの行列の要素のほとんどは 0 であり、これは疎行列と呼ばれます。 NumPy の ndarray array を使用してこのような行列を保存すると、大量のメモリが浪費されます。行列のスパースな性質により、非ゼロ要素に関する関連情報のみを保存することでメモリ使用量を節約できます。さらに、この特別な構造を使用して行列の演算 関数を作成すると、行列演算の速度も向上します。 スパース行列を表現するためのさまざまな形式が scipy.sparse ライブラリで提供されており、各形式には異なる用途がありますが、その中で dok_matrix と lil_matrix は要素を段階的に追加するのに適しています。
dok_matrix は、辞書を使用して行列内の 0 ではない要素を保存する dict
からを継承します。辞書のキーは要素 (行、列) 情報を保存するタプルで、対応する値は要素値の (行, 列) ) の行列。明らかに、辞書形式のスパース行列は、単一要素の追加、削除、およびアクセス操作に非常に適しています。通常は、ゼロ以外の要素を徐々に追加し、高速操作をサポートする他の形式に変換するために使用されます。 a = sparse.dok_matrix((10, 5))
a[2:5, 3] = 1.0, 2.0, 3.0
print a.keys()
print a.values()
[(2, 3), (3, 3), (4, 3)]
[1.0, 2.0, 3.0]
b = sparse.lil_matrix((10, 5)) b[2, 3] = 1.0 b[3, 4] = 2.0 b[3, 2] = 3.0 print b.data print b.rows
[[] [] [1.0] [3.0, 2.0] [] [] [] [] [] []] [[] [] [3] [2, 4] [] [] [] [] [] []]
coo_matrix は、row、col、data の 3 つの配列を使用して、ゼロ以外の要素の情報を格納します。 3 つの配列は同じ長さを持ち、row は要素の行を保持し、col は要素の列を保持し、data は要素の値を保持します。 coo_matrix は、要素のアクセス、追加、削除をサポートしていません。一度作成すると、他の形式の行列に変換する以外の操作や行列演算を実行することはほとんど不可能になります。
coo_matrix は繰り返し要素をサポートしています。つまり、同じ行と列の座標が複数回出現する可能性があり、他の形式の行列に変換すると、同じ行と列の座標に対応する複数の値が合計されます。以下の例では、(2, 3) は 1 と 10 の 2 つの値に対応します。 ndarray 配列に変換する場合、これら 2 つの値は加算されるため、(2, 3) の座標の値は最終的な行列は 11 です。
多くの疎行列データはこの形式でファイルに保存されます。たとえば、CSV ファイルには「ユーザー ID、プロダクト ID、評価値」の 3 つの列が含まれる場合があります。 numpy.loadtxt または pandas.read_csv を使用してデータを読み込んだ後、coo_matrix を介してスパース行列にすぐに変換できます。行列の各行はユーザーに対応し、各列は製品に対応し、要素の値はユーザーの評価です。製品の。
row = [2, 3, 3, 2] col = [3, 4, 2, 3] data = [1, 2, 3, 10] c = sparse.coo_matrix((data, (row, col)), shape=(5, 6)) print c.col, c.row, c.data print c.toarray()
個人的な操作では、疎行列演算を伴うため coo_matrix を選択しましたが、他の形式で保存しないと複雑さが高すぎます (時間と空間)。1000*1000 の行列には約 2 時間かかります。も致命的です。 Pajek ソフトウェアのデータ入力形式のトリプレットを考える以外に選択肢はありませんでした:
そこで、自分のデータを同様のトリプレットに処理することを考えました。
つまり、「行列行列」—>「タプル トリプル」—>「sparseMatrix2tuple」—>「scipy.sparse」
以上がスパース ストレージと Python スパース行列の変換の詳細な紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









この記事では、Debianシステムの下でApacheログを分析することにより、Webサイトのパフォーマンスを改善する方法について説明します。 1.ログ分析の基本Apacheログは、IPアドレス、タイムスタンプ、リクエストURL、HTTPメソッド、応答コードなど、すべてのHTTP要求の詳細情報を記録します。 Debian Systemsでは、これらのログは通常、/var/log/apache2/access.logおよび/var/log/apache2/error.logディレクトリにあります。ログ構造を理解することは、効果的な分析の最初のステップです。 2。ログ分析ツールさまざまなツールを使用してApacheログを分析できます。コマンドラインツール:GREP、AWK、SED、およびその他のコマンドラインツール。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

開発環境とエコシステムにおけるLaravelとPythonの比較は次のとおりです。1。Laravelの開発環境は簡単で、PHPと作曲家のみが必要です。 Laravelforgeなどの豊富な範囲の拡張パッケージを提供しますが、拡張パッケージのメンテナンスはタイムリーではない場合があります。 2。Pythonの開発環境もシンプルで、PythonとPIPのみが必要です。エコシステムは巨大で複数のフィールドをカバーしていますが、バージョンと依存関係の管理は複雑な場合があります。

PHPとPythonにはそれぞれ独自の利点があり、プロジェクトの要件に従って選択します。 1.PHPは、特にWebサイトの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンス、機械学習、人工知能に適しており、簡潔な構文を備えており、初心者に適しています。

この記事では、DDOS攻撃検出方法について説明します。 「DebiansNiffer」の直接的なアプリケーションのケースは見つかりませんでしたが、次の方法はDDOS攻撃検出に使用できます:効果的なDDOS攻撃検出技術:トラフィック分析に基づく検出:突然のトラフィックの成長、特定のポートの接続の急増などのネットワークトラフィックの異常なパターンの識別。たとえば、PysharkライブラリとColoramaライブラリと組み合わせたPythonスクリプトは、ネットワークトラフィックをリアルタイムで監視し、アラートを発行できます。統計分析に基づく検出:データなどのネットワークトラフィックの統計的特性を分析することにより

この記事では、DebianシステムでNGINXSSL証明書を更新する方法について説明します。ステップ1:最初にCERTBOTをインストールして、システムがCERTBOTおよびPython3-Certbot-Nginxパッケージがインストールされていることを確認してください。インストールされていない場合は、次のコマンドを実行してください。sudoapt-getupdatesudoapt-getinstolcallcertbotthon3-certbot-nginxステップ2:certbotコマンドを取得して構成してlet'sencrypt証明書を取得し、let'sencryptコマンドを取得し、nginx:sudocertbot - nginxを構成します。

DebianシステムのReadDir関数は、ディレクトリコンテンツの読み取りに使用されるシステムコールであり、Cプログラミングでよく使用されます。この記事では、ReadDirを他のツールと統合して機能を強化する方法について説明します。方法1:C言語プログラムを最初にパイプラインと組み合わせて、cプログラムを作成してreaddir関数を呼び出して結果をinclude#include#include inctargc、char*argv []){dir*dir; structdireant*entry; if(argc!= 2){(argc!= 2){

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。
