Linux でのシステム機能の簡単な分析
この記事は主にlinuxのシステム関数を簡単に分析します。興味のある方は参考にしてください
具体的な内容は次のとおりです。
int libc_system (const char *line) { if (line == NULL) /* Check that we have a command processor available. It might not be available after a chroot(), for example. */ return do_system ("exit 0") == 0; return do_system (line); } weak_alias (libc_system, system)
static int do_system (const char *line) { int status, save; pid_t pid; struct sigaction sa; #ifndef _LIBC_REENTRANT struct sigaction intr, quit; #endif sigset_t omask; sa.sa_handler = SIG_IGN; sa.sa_flags = 0; sigemptyset (&sa.sa_mask); DO_LOCK (); if (ADD_REF () == 0) { if (sigaction (SIGINT, &sa, &intr) < 0) { (void) SUB_REF (); goto out; } if (sigaction (SIGQUIT, &sa, &quit) < 0) { save = errno; (void) SUB_REF (); goto out_restore_sigint; } } DO_UNLOCK (); /* We reuse the bitmap in the 'sa' structure. */ sigaddset (&sa.sa_mask, SIGCHLD); save = errno; if (sigprocmask (SIG_BLOCK, &sa.sa_mask, &omask) < 0) { #ifndef _LIBC if (errno == ENOSYS) set_errno (save); else #endif { DO_LOCK (); if (SUB_REF () == 0) { save = errno; (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); out_restore_sigint: (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); set_errno (save); } out: DO_UNLOCK (); return -1; } } #ifdef CLEANUP_HANDLER CLEANUP_HANDLER; #endif #ifdef FORK pid = FORK (); #else pid = fork (); #endif if (pid == (pid_t) 0) { /* Child side. */ const char *new_argv[4]; new_argv[0] = SHELL_NAME; new_argv[1] = "-c"; new_argv[2] = line; new_argv[3] = NULL; /* Restore the signals. */ (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); (void) sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL); INIT_LOCK (); /* Exec the shell. */ (void) execve (SHELL_PATH, (char *const *) new_argv, environ); _exit (127); } else if (pid < (pid_t) 0) /* The fork failed. */ status = -1; else /* Parent side. */ { /* Note the system() is a cancellation point. But since we call waitpid() which itself is a cancellation point we do not have to do anything here. */ if (TEMP_FAILURE_RETRY (waitpid (pid, &status, 0)) != pid) status = -1; } #ifdef CLEANUP_HANDLER CLEANUP_RESET; #endif save = errno; DO_LOCK (); if ((SUB_REF () == 0 && (sigaction (SIGINT, &intr, (struct sigaction *) NULL) | sigaction (SIGQUIT, &quit, (struct sigaction *) NULL)) != 0) || sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL) != 0) { #ifndef _LIBC /* glibc cannot be used on systems without waitpid. */ if (errno == ENOSYS) set_errno (save); else #endif status = -1; } DO_UNLOCK (); return status; } do_system
#ifdef FORK pid = FORK (); #else pid = fork (); #endif if (pid == (pid_t) 0) { /* Child side. */ const char *new_argv[4]; new_argv[0] = SHELL_NAME; new_argv[1] = "-c"; new_argv[2] = line; new_argv[3] = NULL; /* Restore the signals. */ (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); (void) sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL); INIT_LOCK (); /* Exec the shell. */ (void) execve (SHELL_PATH, (char *const *) new_argv, environ); _exit (127); } else if (pid < (pid_t) 0) /* The fork failed. */ status = -1; else /* Parent side. */ { /* Note the system() is a cancellation point. But since we call waitpid() which itself is a cancellation point we do not have to do anything here. */ if (TEMP_FAILURE_RETRY (waitpid (pid, &status, 0)) != pid) status = -1; }
まず、フロントエンド関数がシステムを呼び出します。 fork を呼び出して子プロセスを生成します。このうち、fork の戻り値は 2 つあり、親プロセスに対しては子プロセスの pid を返し、子プロセスに対しては 0 を返します。したがって、子プロセスは 6 ~ 24 行のコードを実行し、親プロセスは 30 ~ 35 行のコードを実行します。
子プロセスのロジックは非常に明確であり、SHELL_PATH で指定されたプログラムを実行するために execve が呼び出され、パラメーターは new_argv を介して渡され、環境変数
はグローバル変数 environ です。SHELL_PATHとSHELL_NAMEは次のように定義されています
#define SHELL_PATH "/bin/sh" /* Path of the shell. */ #define SHELL_NAME "sh" /* Name to give it. */
実際には、システムに渡されたコマンドを実行するために
を呼び出すサブプロセスが生成されます。 。 実際に私がシステム関数を研究した理由と焦点は次のとおりです:
CTFのpwnの質問で、スタックオーバーフローを介したシステム関数の呼び出しが失敗することがありますが、マスターは環境変数が上書きされると聞いています。私はずっと無知でしたが、今日、徹底的に勉強した結果、ようやく理解できました。 ここでシステム関数に必要な環境変数はグローバル変数environに格納されていますが、この変数の内容はどうなっているのでしょうか。 environ は glibc/csu/libc-start.c で定義されています。いくつかの重要なステートメントを見てみましょう。# define LIBC_START_MAIN libc_start_main
libc_start_main は _start によって呼び出される関数で、プログラムの開始時に初期化作業が必要になります。これらの用語がわからない場合は、この記事を読んでください。次に、LIBC_START_MAIN 関数を見てみましょう。
STATIC int LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL), int argc, char **argv, #ifdef LIBC_START_MAIN_AUXVEC_ARG ElfW(auxv_t) *auxvec, #endif typeof (main) init, void (*fini) (void), void (*rtld_fini) (void), void *stack_end) { /* Result of the 'main' function. */ int result; libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up; #ifndef SHARED char **ev = &argv[argc + 1]; environ = ev; /* Store the lowest stack address. This is done in ld.so if this is the code for the DSO. */ libc_stack_end = stack_end; ...... /* Nothing fancy, just call the function. */ result = main (argc, argv, environ MAIN_AUXVEC_PARAM); #endif exit (result); }
19 行目で environ の値が SHARED を定義せずに定義されていることがわかります。スタートアップ プログラムは LIBC_START_MAIN を呼び出す前に、まず
文字列
配列 は空のアドレスで区切って argv 配列のすぐ後ろに配置する必要があります。したがって、17 行目の &argv[argc + 1] ステートメントは、スタック上の環境変数配列の最初のアドレスを取得し、それを ev に保存し、最後に environ に保存します。 203 行目は、environ の値をスタックにプッシュする main 関数を呼び出します。environ のアドレスが上書きされない限り、これがスタック オーバーフローによって上書きされても問題はありません。 そのため、スタックオーバーフローの長さが大きすぎて、オーバーフローの内容が環境内のアドレスの重要な内容を覆っている場合、システム関数の呼び出しは失敗します。特定の環境変数がオーバーフロー アドレスからどの程度離れているかは、_start で中断することで確認できます。
以上がLinux でのシステム機能の簡単な分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Centosとubuntuの重要な違いは次のとおりです。起源(CentosはRed Hat、for Enterprises、UbuntuはDebianに由来します。個人用のDebianに由来します)、パッケージ管理(CentosはYumを使用し、安定性に焦点を当てます。チュートリアルとドキュメント)、使用(Centosはサーバーに偏っています。Ubuntuはサーバーやデスクトップに適しています)、その他の違いにはインストールのシンプルさが含まれます(Centos is Thin)

Centosのインストール手順:ISO画像をダウンロードし、起動可能なメディアを燃やします。起動してインストールソースを選択します。言語とキーボードのレイアウトを選択します。ネットワークを構成します。ハードディスクをパーティション化します。システムクロックを設定します。ルートユーザーを作成します。ソフトウェアパッケージを選択します。インストールを開始します。インストールが完了した後、ハードディスクから再起動して起動します。

Centosは、上流の分布であるRhel 8が閉鎖されたため、2024年に閉鎖されます。このシャットダウンはCentos 8システムに影響を与え、更新を継続し続けることができません。ユーザーは移行を計画する必要があり、提案されたオプションには、Centos Stream、Almalinux、およびRocky Linuxが含まれ、システムを安全で安定させます。

Centosは廃止されました、代替品には次のものが含まれます。1。RockyLinux(最高の互換性)。 2。アルマリン(Centosと互換性); 3。Ubuntuサーバー(設定が必要); 4。RedHat Enterprise Linux(コマーシャルバージョン、有料ライセンス); 5。OracleLinux(CentosとRhelと互換性があります)。移行する場合、考慮事項は次のとおりです。互換性、可用性、サポート、コスト、およびコミュニティサポート。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Dockerデスクトップの使用方法は? Dockerデスクトップは、ローカルマシンでDockerコンテナを実行するためのツールです。使用する手順には次のものがあります。1。Dockerデスクトップをインストールします。 2。Dockerデスクトップを開始します。 3。Docker Imageを作成します(DockerFileを使用); 4. Docker画像をビルド(Docker Buildを使用); 5。Dockerコンテナを実行します(Docker Runを使用)。

CentOSが停止した後、ユーザーは次の手段を採用して対処できます。Almalinux、Rocky Linux、Centosストリームなどの互換性のある分布を選択します。商業分布に移行する:Red Hat Enterprise Linux、Oracle Linuxなど。 Centos 9ストリームへのアップグレード:ローリングディストリビューション、最新のテクノロジーを提供します。 Ubuntu、Debianなど、他のLinuxディストリビューションを選択します。コンテナ、仮想マシン、クラウドプラットフォームなどの他のオプションを評価します。

VSコードシステムの要件:オペレーティングシステム:オペレーティングシステム:Windows 10以降、MACOS 10.12以上、Linux Distributionプロセッサ:最小1.6 GHz、推奨2.0 GHz以上のメモリ:最小512 MB、推奨4 GB以上のストレージスペース:最低250 MB以上:その他の要件を推奨:安定ネットワーク接続、XORG/WAYLAND(Linux)
