Python での Snownlp センチメント分析の簡単なデモ共有
以下のエディターは、python Snownlp センチメント分析の簡単なデモ (共有) を提供します。編集者はこれがとても良いと思ったので、参考として共有します。エディターをフォローして見てみましょう
SnowNLP は中国人によって開発された Python クラス ライブラリ であり、現在のほとんどの自然言語処理ライブラリは TextBlob からインスピレーションを得たものです。英語なので、中国語の処理に便利なクラス ライブラリを作成しました。TextBlob とは異なり、NLTK はすべて自分で実装されており、いくつかの学習済みの辞書が付属しています。なお、このプログラムはUnicodeエンコードを扱っていますので、ご利用の際はご自身でUnicodeにデコードしてください。 MITライセンスに基づいてリリースされています。
itsgithub ホームページ
理解を容易にするために、上のリンクの Python コードを変更し、コメントを追加しました:
from snownlp import SnowNLP # SnowNLP库: # words:分词 # tags:关键词 # sentiments:情感度 # pinyin:拼音 # keywords(limit):关键词 # summary:关键句子 # sentences:语序 # tf:tf值 # idf:idf值 s = SnowNLP(u'这个东西真心很赞') # s.words # [u'这个', u'东西', u'真心', u'很', u'赞'] print(s.words) s.tags # [(u'这个', u'r'), (u'东西', u'n'), (u'真心', u'd') # , (u'很', u'd'), (u'赞', u'Vg')] print(s.sentiments) # s.sentiments # 0.9769663402895832 positive的概率 # s.pinyin # [u'zhe', u'ge', u'dong', u'xi', # u'zhen', u'xin', u'hen', # u'zan']4 s = SnowNLP(u'「繁體字」「繁體中文」的叫法在臺灣亦很常見。') # s.han # u'「繁体字」「繁体中文」的叫法在台湾亦很常见。' print(s.han)
from snownlp import SnowNLP text = u''' 自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。 它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。 自然语言处理是一门融语言学、计算机科学、数学于一体的科学。 因此,这一领域的研究将涉及自然语言,即人们日常使用的语言, 所以它与语言学的研究有着密切的联系,但又有重要的区别。 自然语言处理并不是一般地研究自然语言, 而在于研制能有效地实现自然语言通信的计算机系统, 特别是其中的软件系统。因而它是计算机科学的一部分。 ''' s = SnowNLP(text) print(s.keywords(6)) # [u'语言', u'自然', u'计算机'] 不能用tags输出关键字. s.summary(3) # [u'因而它是计算机科学的一部分', u'自然语言处理是一门融语言学、计算机科学、 # 数学于一体的科学', u'自然语言处理是计算机科学领域与人工智能领域中的一个重要方向']s.sentences # print(s.sentences) print(s.sentiments) # 1.0 s = SnowNLP([[u'这篇', u'文章'], [u'那篇', u'论文'], [u'这个']]) # print(s.tf) # print(s.idf) # print(s.sim([u'文章'])) # [0.3756070762985226, 0, 0]
コンパイルして実行する前に、まず snownlp パッケージをインストールします、次に pylab モジュールと pandas モジュールが続きます: VS Code ターミナル ([表示] -> [統合ターミナル]) に入力します:
pip install snownlp pip install pylab pip install pandas
脚本はとても良いと思いますが、完全に撮影されていませんでした:)俳優の演技についてはまだ少し疑問があります〜笑
最後のステップは処理です:
from snownlp import SnowNLP import pandas as pd import pylab as pl txt = open('F:/_analyse_Emotion.txt') text = txt.readlines() txt.close() print('读入成功') sentences = [] senti_score = [] for i in text: a1 = SnowNLP(i) a2 = a1.sentiments sentences.append(i) # 语序... senti_score.append(a2) print('doing') table = pd.DataFrame(sentences, senti_score) # table.to_excel('F:/_analyse_Emotion.xlsx', sheet_name='Sheet1') # ts = pd.Series(sentences, senti_score) # ts = ts.cumsum() # print(table) x = [1, 2, 3, 4, 5, 6, 7, 8] pl.mpl.rcParams['font.sans-serif'] = ['SimHei'] pl.plot(x, senti_score) pl.title(u'心 灵 捕 手 网 评') pl.xlabel(u'评 论 用 户') pl.ylabel(u'情 感 程 度') pl.show()
最後のエフェクト:
以上がPython での Snownlp センチメント分析の簡単なデモ共有の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
